Computer Engineering and Applications ›› 2016, Vol. 52 ›› Issue (17): 68-72.

Previous Articles     Next Articles

Hopf bifurcation of SIRS models with delayed and saturation incidence

ZHANG Peijun1, WANG Zhen1, SUN Wei1, ZHANG Hui2   

  1. 1.Department of Applied Statistics and Science, Xijing University, Xi’an 710123, China
    2.Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China
  • Online:2016-09-01 Published:2016-09-14

具有时滞和饱和接触率的SIRS模型的Hopf分支

章培军1,王  震1,孙  卫1,张  慧2   

  1. 1.西京学院 应用统计与理学系,西安 710123
    2.西北工业大学 应用数学系,西安 710072

Abstract: This thesis researches SIRS models with delayed and saturation incidence by using the bifurcation method of differential equations. By means of the Hopf bifurcation theorem and considering the delay [τ] as a bifurcation parameter, the endemic equilibrium is locally stable when [τ] is small enough and Hopf bifurcation occurs when [τ] passes through some critical values. Matlab is employed to carry out numerical simulation to verify the results.

Key words: time delayed, Hopf bifurcation, saturation incidence, SIRS models

摘要: 应用微分方程分支理论,研究了具有时滞和饱和接触率的SIRS模型,以时滞[τ]为分支参数,运用Hopf分支理论,得到当时滞[τ]充分小时正平衡点是局部渐近稳定的,当[τ]经过一系列临界值时模型出现Hopf分支。用Matlab软件进行数值仿真验证了结论的正确性。

关键词: 时滞, Hopf分支, 饱和接触率, SIRS模型