Computer Engineering and Applications ›› 2015, Vol. 51 ›› Issue (9): 68-71.
Previous Articles Next Articles
YANG Chen, MA Haicheng
Online:
Published:
杨 陈,马海成
Abstract: Two graphs G and H are said to be matching equivalent if they possess the same matching polynomials.[δ(G)] denotes the number of graphs which are matching equivalent to graph G. This paper lets[ Pn-2 ]be a path with vertices sequence[x1,x2,?,xn?2. In(n6)]denotes the tree obtained from[ Pn?2 ]by adding pendant edges at vertices[ x2 ]and[ xn?3], respectively. It computes the number of graphs of matching equivalent to the union graphs of I shape. Namely, [δi∈AIi], A is a repeated set of integers of great than or equal 6.
Key words: graphs of I shape, matching polynomial, matching equivalence
摘要: 两个图[G]和[H]的匹配多项式相等,则称它们匹配等价。用[δ(G)]表示图[G]的所有不同构的匹配等价图的个数。[In(n6)]表示由路[Pn-4]的两个端点分 别粘接一个[P3]的2度点后得到的图。计算了一些[I]形图并图的匹配等价图的个数,即[δi∈AIi],这里[A]是一些大于等于6的整数组成的可重集。
关键词: I形图, 匹配多项式, 匹配等价
YANG Chen, MA Haicheng. Number of graphs of matching equivalent to union graphs of I shape[J]. Computer Engineering and Applications, 2015, 51(9): 68-71.
杨 陈,马海成. I形图的并的匹配等价图数[J]. 计算机工程与应用, 2015, 51(9): 68-71.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2015/V51/I9/68