Computer Engineering and Applications ›› 2014, Vol. 50 ›› Issue (21): 125-128.
Previous Articles Next Articles
SHEN Yan, YU Donghua, WANG Haolei
Online:
Published:
沈 艳,余冬华,王昊雷
Abstract: Combining particle swarm with K-means algorithm is one of the important methods in data mining, but all methods almost ignore the empty class problem which the particle update causes. This paper proposes a PK-means clustering algorithm based on multi-subswarms particle swarm and pseudo means, then is compared with both PSOK-means and K-means. The theory analysis and experiments show that the algorithm not only avoids empty clustering class but also has well global convergence and the local optimization, overcomes local minimum better, has a great effect on isolated data.
Key words: clustering analysis, multi-subswarms particle swarm, global optimization, K-means, PSOK-means
摘要: 粒子群(PSO)与K-means结合是聚类分析中的重要方法之一,但都未考虑粒子更新导致的空类问题。提出基于多子群粒子群伪均值(PK-means)聚类算法,为该问题的解决提供一种有效途径,并与粒子群K均值(PSOK-means),K-means算法进行比较。理论分析和实验表明,该算法不但可以防止空类出现,而且同时还具有非常好的全局收敛性和局部寻优能力,并且在孤立点问题的处理上也具有很好的效果。
关键词: 聚类分析, 多子群粒子群, 全局优化, K-means, PSOK-means
SHEN Yan, YU Donghua, WANG Haolei. Improvement of K-means based on particle swarm clustering algorithm[J]. Computer Engineering and Applications, 2014, 50(21): 125-128.
沈 艳,余冬华,王昊雷. 粒子群K-means聚类算法的改进[J]. 计算机工程与应用, 2014, 50(21): 125-128.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2014/V50/I21/125