Computer Engineering and Applications ›› 2013, Vol. 49 ›› Issue (1): 46-49.

Previous Articles     Next Articles

Parameter identification of nonlinear system model based on bacterial swarm foraging for optimization

XU Zhicheng1, WANG Shuqing2   

  1. 1.Changzhou Institute of Mechatronic Technology, Changzhou, Jiangsu 213164, China
    2.Institute of Advanced Process Control, National Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
  • Online:2013-01-01 Published:2013-01-16

基于菌群优化算法的非线性系统模型参数辨识

徐志成1,王树青2   

  1. 1.常州机电职业技术学院,江苏 常州 213164
    2.浙江大学 工业控制技术国家重点实验室 先进控制研究所,杭州 310027

Abstract: Parameter estimation of Nonlinear System Model(NSM) has been always the hot issue in the automatic control field. Aiming at NSM, a novel method is proposed to estimate parameter of NSM by combining the Bacterial Swarm Foraging for Optimization(DSFO). BSFO simulates the social behavior of foraging bacteria, in which the bacteria positions in the parameter spaces are set as the parameters of NSM, and the precision and efficiency for parameters identification are improved. Applied to heavy oil thermal cracking model, the method gets the precise process model, and the model outputs coincide to the actual outputs. The simulation results show that BSFO algorithm provides an attractive method to identify parameters of NSM.

Key words: Bacterial Swarm Foraging for Optimization(BSFO), nonlinear system, parameter identification

摘要: 非线性系统模型参数估计一直是自动控制领域的研究热点。针对非线性系统,结合菌群优化(BSFO)算法的特点,提出了一种新型的非线性系统模型参数辨识方法。通过将待辨识参数设置为群体细菌在参数空间的位置,并模拟细菌群体觅食的动态行为来实现对系统参数的辨识,有效地提高了参数辨识的精度和效率。通过对重油热解三集总模型进行了仿真研究,得到了较为精确的过程模型,模型输出与实际输出基本一致。仿真结果表明,菌群优化算法为非线性系统模型参数估计提供了一种有效的途径。

关键词: 菌群优化, 非线性系统, 参数辨识