Computer Engineering and Applications ›› 2013, Vol. 49 ›› Issue (1): 261-264.
Previous Articles Next Articles
WANG Guanyu1, GUO Yong2
Online:
Published:
王观玉1,郭 勇2
Abstract: Study about case system feature weights optimization problem, the traditional method feature weights’ determininatiion has the over-reliance on subjective judgment and experience, and a single Genetic Algorithm(GA) or Tabu Algorithm(TA) has their shortcomings, case classification accuracy is low. In order to improve the case classification accuracy, this paper proposes a case system feature weights optimization method based on GA and TA. Using GA global search capability, parallelism and TA local search and memory capacity, it effectively solves the case system feature weights optimization problems. Simulation results show that the hybrid method using the GA and TA merit, can optimize case system feature weights, speed up case retrieval speed and improve the system of case classification accuracy.
Key words: case system, feature weight, Genetic Algorithm(GA), Tabu Algorithm(TA)
摘要: 研究案例系统特征权值优化问题,传统特征权值确定方法过分依赖主观判断和经验,而单一遗传算法或禁忌算法存在各自的不足,因此案例分类精度低。为了提高案例分类精度,提出一种遗传算法和禁忌算法相融合的案例系统特征权值优化方法。利用遗传算法全局搜索能力、并行性和禁忌算法局部搜索和记忆能力,有效地解决了案例系统特征权值优化问题。仿真结果表明,混合方法利用了遗传算法和禁忌算法的优点,很好地优化了案例系统特征权值,从而加快案例系统检索速度,提高了案例分类精度。
关键词: 案例系统, 特征权值, 遗传算法, 禁忌算法
WANG Guanyu1, GUO Yong2. Simulation research on case system feature weights optimization algorithm[J]. Computer Engineering and Applications, 2013, 49(1): 261-264.
王观玉1,郭 勇2. 案例系统特征权值优化算法的仿真研究[J]. 计算机工程与应用, 2013, 49(1): 261-264.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2013/V49/I1/261