Computer Engineering and Applications ›› 2013, Vol. 49 ›› Issue (1): 199-201.

Previous Articles     Next Articles

Adaptive curve interpolation of cubic B-spline based on error control

YE Tieli, LI Xueyi, ZENG Qingliang   

  1. College of Mechanical and Electronic Engineering, Shandong University of Science &Technology, Qingdao, Shandong 266510, China
  • Online:2013-01-01 Published:2013-01-16

基于误差控制的自适应3次B样条曲线插值

叶铁丽,李学艺,曾庆良   

  1. 山东科技大学 机械电子工程学院,山东 青岛 266510

Abstract: Aiming at the problem of the existing curve interpolation algorithm on data compression, an adaptive curve interpolation algorithm of cubic B-spline is presented. An initial cubic B-spline curve is interpolated by selected minimum data points. Based on the presented algorithm for calculating the minimum distance from point to a curve, all the interpolation errors corresponding to remaining data points are calculated, and the maximum interpolation error is obtained. If the maximum error is greater than the threshold value, the point with the maximum error is added to the data points to interpolate a new curve. The process continues until the maximum interpolation error is less than the threshold value. Comparing to the current curve interpolation methods, the proposed algorithm can compress data points greatly with the same precision.

Key words: curve interpolation, cubic B-spline, minimum distance, interpolation error

摘要: 针对现有曲线插值算法不能有效压缩型值点的缺陷,研究了一种自适应三次B样条曲线插值算法。从型值点序列中选用最少的点插值一条初始曲线,基于提出的点到曲线的最小距离计算方法,分别计算各非插值点对应的插值误差,并从中提取最大插值误差。若最大误差大于给定的误差阈值,则将其对应的型值点加入插值型值点序列,重新插值曲线,直到最大插值误差满足误差要求。与现有曲线插值算法相比,该算法可以在保证插值精度的前提下有效压缩数据量。

关键词: 曲线插值, 三次B样条, 最小距离, 插值误差