Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (8): 32-34.

• 博士论坛 • Previous Articles     Next Articles

Recognition of train wheel tread damages based on GA-RBFNN algorithm

ZHAO Yong   

  1. Key Lab of Highway Construction Technology and Equipment of MoE, Department of Machinery, School of Construction Machinery, Chang’an University, Xi’an 710064, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-03-11 Published:2012-03-11

基于GA-RBFNN算法的列车车轮踏面损伤识别

赵 勇   

  1. 长安大学 工程机械学院 机械系,道路施工技术与装备教育部重点实验室,西安 710064

Abstract: In order to the recognition of the train wheel tread damages, the pattern recognition method of the train wheel tread damages is developed. The algorithm uses float encoding to encode learning parameters of network, establishes fitness function, optimizes learning parameters by using the operation of selection, crossover, mutation. Compared with the traditional RBFNN and BP, the experimental results show that the recognition rate of testing samples is higher than traditional RBFNN and BP, the evolutional generations of GA-RBFNN algorithm are less than recursive times of traditional RBFNN and BP.

Key words: Genetic Algorithm-Radial Basis Function Neural Network(GA-RBFNN), tread damage, recognition

摘要: 为了实现列车车轮踏面损伤识别,提出了一种基于GA-RBFNN算法的货车车轮踏面损伤识别方法。该算法采用浮点数编码将RBFNN的中心参数和宽度进行了编码,利用GA的选择、交叉和变异操作优化网络参数,权值采用最小二乘法确定。利用该算法和BP算法、传统的RBFNN算法进行了剥离和擦伤识别的对比实验,结果表明:GA-RBFNN算法对剥离、擦伤和非损伤三类样本的测试集的识别率高于传统的RBFNN算法和BP算法,而且GA-RBFNN算法的进化代数远远小于BP算法和传统的RBFNN算法迭代次数。

关键词: 遗传算法-径向基函数神经网络(GA-RBFNN), 踏面损伤, 识别