Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (8): 144-147.

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Improved PF algorithm and performance analysis

CAO Jie, LI Wei   

  1. College of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-03-11 Published:2012-03-11

一种改进的粒子滤波算法及其性能分析

曹 洁,李 伟   

  1. 兰州理工大学 计算机与通信学院,兰州 730050

Abstract: A new particle filter is proposed for the on-line estimation problem of non-Gauss nonlinear systems. In order to weaken the effect of historical information and enhance the effect of up-to-date measurement, it introduces attenuation memory factor for generating the important density function based on the Unscented Kalman filter(UKF) for a better performance in inhibiting the particle degradation problems in the new algorithm. As a result, the theoretical analysis and experimental results show that the new particle filter outperforms obviously superior to the standard particle filter and Unscented particle filter.

Key words: state estimation, particle filter, attenuation memory factor, important density function

摘要: 针对非线性、非高斯系统状态的在线估计问题,提出了一种改进的粒子滤波算法。该算法采用Unscented卡尔曼滤波器(UKF)产生系统的状态估计,并在量测更新过程中加入衰减记忆因子,消弱滤波器对历史信息的依赖,增强当前量测信息对滤波器的修正作用,从而产生一个优选的建议分布函数,较好地抑制了粒子退化问题。理论分析和实验表明:引入记忆衰减因子的粒子滤波,即衰减记忆无味粒子滤波(MAUPF)的性能明显优于标准的粒子滤波以及Unscented粒子滤波。

关键词: 状态估计, 粒子滤波器, 记忆衰减因子, 重要性概率密度函数