Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (36): 50-53.

Previous Articles     Next Articles

New set of kernel functions based on Laguerre orthogonal  polynomial

ZHANG Rui1, WANG Wenjian2,3, WANG Jiaqi1, WANG Yujiao1   

  1. 1.School of Science, Shandong University of Technology, Zibo, Shandong 255049, China
    2.Key Lab of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan 030006, China
    3.School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China
  • Online:2012-12-21 Published:2012-12-21

一类新的基于拉盖尔正交多项式的核函数

张  瑞1,王文剑2,3,王嘉琦1,王玉娇1   

  1. 1.山东理工大学 理学院,山东 淄博 255049
    2.山西大学 计算智能与中文信息处理教育部重点实验室,太原 030006
    3.山西大学 计算机与信息技术学院,太原 030006

Abstract: This paper  introduces  generalized  Laguerre  polynomial based on Laguerre orthogonal  polynomial, and  derives a new set of kernel function—Laguerre kernel function from generalized Laguerre  polynomial. The performance and robustness of the presented kernel are investigated on bi-spiral benchmark data set as well as five data sets from the UCI benchmark repository. The experiment results demonstrate that the presented kernel has better robustness and generalization performance compared with commonly used kernel functions(polynomial kernel and Radial Basis Function etc.). Moreover, the Laguerre kernel has one parameter which only chooses from natural number, thus parameter optimization is facilitated greatly.

Key words: Support Vector Machine(SVM), kenel function, model selection

摘要: 基于拉盖尔正交多项式,提出了广义的拉盖尔多项式,由此建立了一类新的核函数—拉盖尔核函数。在双螺旋集和标准UCI数据集上的实验表明,该核函数比常用的核函数(多项式核、高斯径向基核等)具有更强的鲁棒性与更好的泛化性能,而且该核函数的参数仅在自然数中取值,能大大缩短参数优化时间。

关键词: 支持向量机, 核函数, 模型选择