Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (29): 196-200.

Previous Articles     Next Articles

Fuzzy support vector data description based on vague sets

SHEN Juhong, HUANG Yongdong, KONG Nina   

  1. School of Information and Computation Science, Beifang University of Nationalities, Yinchuan 750021, China
  • Online:2012-10-11 Published:2012-10-22

一种Vague集的模糊支持向量数据描述

沈菊红,黄永东,孔妮娜   

  1. 北方民族大学 信息与计算科学学院,银川 750021

Abstract: To resolve the problem of over-fitted caused by noises and outliers in support vector data description, fuzzy support vector data description based on vague sets(VFSVDD) is proposed in this paper. Fuzzy k-means clustering algorithm is employed for generating the truth-membership and false-membership, how each training example affects the boundary of hypersphere could be controlled. Test data from UCI machine learning repository are employed to evaluate the usefulness of VFSVDD.

Key words: Support Vector Data Description(SVDD), Vague set, membership, fuzzy k-means

摘要: 针对支持向量数据描述中噪声和孤立点带来的过拟合问题,提出了一种Vague集的支持向量数据描述(VFSVDD),利用模糊k-均值聚类方法生成每个训练样本的真、假隶属度,可以精细地控制训练样本对超球面边界的影响。用UCI机器学习数据集的数据实验验证了VFSVDD的有效性。

关键词: 支持向量数据描述, Vague集, 隶属度, 模糊k-均值聚类