Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (29): 119-123.
Previous Articles Next Articles
JIAO Shenglan, YANG Bingru, ZHAI Yun, ZHAO Wanli
Online:
Published:
焦盛岚,杨炳儒,翟 云,赵万里
Abstract: For the issue of classification on imbalanced datasets, this paper presents an improved SVM-KNN classification algorithm. On this basis, an ensemble learning model is proposed. This model employs limited sampling to segment the majority class samples, re-combines the subset of majority class samples with the minority class samples, obtains several basic classifiers by training the combined subset based on improved SVM-KNN. These basic classifiers are integrated. Experimental results on UCI dataset show that this ensemble learning model has satisfactory performance when dealing with issue of classification on imbalanced datasets.
Key words: imbalanced data, ensemble learning model, basic classifier, improved Support Vector Machine-K Nearest Neighbor(SVM-KNN), UCI dataset
摘要: 针对非平衡数据分类问题,提出了一种改进的SVM-KNN分类算法,在此基础上设计了一种集成学习模型。该模型采用限数采样方法对多数类样本进行分割,将分割后的多数类子簇与少数类样本重新组合,利用改进的SVM-KNN分别训练,得到多个基本分类器,对各个基本分类器进行组合。采用该模型对UCI数据集进行实验,结果显示该模型对于非平衡数据分类有较好的效果。
关键词: 非平衡数据, 集成学习模型, 基本分类器, 改进的支持向量机-K最近邻(SVM-KNN), UCI 数据集
JIAO Shenglan, YANG Bingru, ZHAI Yun, ZHAO Wanli. Ensemble learning model for imbalanced data classification[J]. Computer Engineering and Applications, 2012, 48(29): 119-123.
焦盛岚,杨炳儒,翟 云,赵万里. 一种用于非平衡数据分类的集成学习模型[J]. 计算机工程与应用, 2012, 48(29): 119-123.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2012/V48/I29/119