Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (24): 192-196.

Previous Articles     Next Articles

New hybrid particle swarm optimization algorithm for stochastic loader problem

WANG Hong1, ZHAO Peiyi2   

  1. 1.School of Finance, Shandong Polytechnic University, Jinan 250100, China
    2.Shandong Provincial Academy of Education Recruitment and Examination, Jinan 250011, China
  • Online:2012-08-21 Published:2012-08-21

随机装卸工问题的新型混合粒子群算法

王  红1,赵培怡2   

  1. 1.山东轻工业学院 财政与金融学院,济南 250100
    2.山东省教育招生考试院,济南 250011

Abstract: The stochastic loader problem is proposed and converted to a deterministic program. As a new computational method for the combinatorial optimization problem, the Particle Swarm Optimization algorithm is simple and effective, but it does suffer from the premature convergence. In order to overcome this problem, a new hybrid Particle Swarm Optimization algorithm combined with Artificial Immune Algorithm is proposed and used to solve the stochastic loader problem. Numerical examples show that compared with the basic Particle Swarm Optimization algorithm, the new hybrid particle swarm optimization algorithm has higher efficiency and reliability.

Key words: stochastic loader problem, Particle Swarm Optimization(PSO), artificial immune

摘要: 提出随机装卸工问题并将其转化为确定性问题,给出了其求解策略。针对粒子群算法简便实用但易过早收敛的问题,提出了一种结合人工免疫算法的新型混合粒子群算法,将该算法运用于求解随机装卸工问题。数值算例的计算结果表明:与基本粒子群算法相比,改进的粒子群算法在求解随机装卸工问题上表现出的求解精度和速度都十分理想。

关键词: 随机装卸工问题, 粒子群算法, 人工免疫