Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (2): 56-58.
• 研究、探讨 • Previous Articles Next Articles
WANG Lei1, GUO Sizong2, LI Na1
Received:
Revised:
Online:
Published:
王 磊1,郭嗣琮2,李 娜1
Abstract: This paper studies the first order fuzzy differential equations with initial value problem by using the strongly generalized differentiability concept. Utilizing the predictor-corrector method, the problem of finding a numerical approximation of solutions is investigated. The method’s applicability is illustrated by solving a linear first-order fuzzy differential equation.
Key words: triangular fuzzy number, fuzzy differential equation, generalized Hukuhara differentiability, Adams method, predictor-corrector method
摘要: 在推广Hukuhara导数概念下研究了一阶模糊微分方程的模糊初值问题,利用预估-校正算法给出了模糊初值问题的数值解,文中的例子说明了方法的可行性及实用性。
关键词: 三角模糊数, 模糊微分方程, 推广Hukuhara导数, 阿达姆斯法, 预估-校正法
WANG Lei1, GUO Sizong2, LI Na1. Numerical solution of fuzzy differential equations under generalized Hukuhara differentiability[J]. Computer Engineering and Applications, 2012, 48(2): 56-58.
王 磊1,郭嗣琮2,李 娜1. 具有推广Hukuhara导数的模糊微分方程的数值解[J]. 计算机工程与应用, 2012, 48(2): 56-58.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2012/V48/I2/56