Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (2): 127-129.

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Self-adaptive differential evolution algorithm using mutations based on the t distribution

LIU Xingyang, MAO Li   

  1. Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education), School of Internet of Things, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-01-11 Published:2012-01-11

基于t分布变异的自适应差分进化算法

刘兴阳,毛 力   

  1. 江南大学 物联网工程学院,轻工过程先进控制教育部重点实验室,江苏 无锡 214122

Abstract: A novel differential evolution algorithm is proposed to improve the exploration and exploitation capabilities of differential evolution(DE). In this algorithm, a new mutation operator following the t distribution is used to integrate the advantages of Gaussian and Cauchy mutation, while both the mutation strategy and crossover probability can be gradually self-adapted by learning from their previous successful experience. Experimental studies are carried out on four classical Benchmark functions, and the computational results show that the algorithm has fast convergence, high accuracy more robustness.

Key words: differential evolution, t distribution, mutation strategy adaptation, crossover probability adaptation

摘要: 为了更好地提高差分进化算法的全局探索和局部开发能力,提出了一种改进的差分进化算法。在该算法中,引入t分布变异算子将高斯变异和柯西变异的优点结合起来,根据以往的进化经验自适应地调整进化策略及交叉概率。通过四个典型的Benchmarks函数的测试结果表明算法具有良好的性能。

关键词: 差分进化, t分布, 进化策略自适应, 交叉概率自适应