Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (10): 29-33.

Previous Articles     Next Articles

A kind of clustering algorithm applying particle swarm

QIU Xinjian1,3, XUE Fengfeng2, Senbai Dalabaev1, LIAO Chang1   

  1. 1.College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
    2.Telecommunications Engineering Institute, Air Force Engineering University, Xi’an 710077, China
    3.Unit 68203 of PLA, China
  • Online:2012-04-01 Published:2012-04-11

一种采用粒子群优化的聚类算法

邱新建1,3,薛凤凤2,山拜·达拉拜1,廖  畅1   

  1. 1.新疆大学 信息科学与工程学院,智能信号处理实验室,乌鲁木齐 830046
    2.空军工程大学 电讯工程学院,西安 710077
    3.中国人民解放军68203部队

Abstract: The traditional clustering algorithms have many shortcomings, such as sensitive to initial value and vulner-
able to local minima. The method to determine the number and location of cluster center is proposed. Cloud theory is used to transform particle swarm optimization to improve the performance of PSO. This methed can search more reasonable clustering center. Experimental results show that the algorithm has solved these two drawbacks and obtained a good stability and a better clustering result.

Key words: clustering algorithm, particle swarm, fuzzy c-means

摘要: 针对传统的聚类算法存在对初始化值敏感和容易陷入局部极值等缺点,提出一种确定聚类中心数目和位置的方法。用每一个粒子表示一组聚类中心,采用云理论改造粒子群算法,从而提高粒子群算法的性能,以便搜索到更合理的聚类中心完成聚类划分。实验结果表明该算法很好克服了这两个缺点,获得了稳定性好和更紧凑的聚类效果。

关键词: 聚类算法, 粒子群, 模糊C均值