Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (1): 44-46.

• 研究、探讨 • Previous Articles     Next Articles

Hybrid particle swarm optimization algorithm for solving knapsack problem

WANG Xiaohua1,2, MU Aiqin2, LIU Jinbo2   

  1. 1.School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
    2.Department of Fundamental Courses, Xuzhou Air Force College, Xuzhou, Jiangsu 221000, China

  • Received:1900-01-01 Revised:1900-01-01 Online:2012-01-01 Published:2012-01-01

求解背包问题的混合粒子群优化算法

王晓华1,2,沐爱勤2,刘金波2   

  1. 1.中国矿业大学 计算机学院,江苏 徐州 221008
    2.徐州空军学院 基础部,江苏 徐州 221000

Abstract: A new genetic idea that offspring’s gene is decided by its parent’s, rather than produced by a simple cross is proposed. According to this idea, two methods of producing offspring with genetic probability are produced and they are combined with the particle swarm optimization respectively. The two hybrid particle swarm optimizations are applied to solving knapsack problem, and their performances are compared by normal numerical experiments. The validity of two hybrid algorithms is verified and the impacts of mutation probability on the algorithms are analyzed.

Key words: particle swarm optimization, knapsack problem, genetic probability

摘要: 提出一种新的遗传思想:父代的基因决定子代继承某一基因的概率,而不是由单纯的交叉产生子代。根据此思想,提出两种利用遗传概率产生子代的方法,并将它们分别与粒子群优化算法相结合得到两种求解背包问题的混合粒子群优化算法。通过数值实验说明了同样的算法采用遗传策略要比交叉策略寻优性更强,分析了变异概率对算法的影响。

关键词: 粒子群优化算法, 背包问题, 遗传概率