Computer Engineering and Applications ›› 2011, Vol. 47 ›› Issue (5): 4-6.

• 博士论坛 • Previous Articles     Next Articles

Improved particle swarm optimization algorithm with position weighted

ZHU Tong1,2,LI Xiaofan1,LU Mingwen1,2   

  1. 1.Key Lab of the Earth’s Deep Interior,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
    2.Graduate University,Chinese Academy of Sciences,Beijing 100049,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-02-11 Published:2011-02-11

位置加权的改进粒子群算法

朱 童1,2,李小凡1,鲁明文1,2   

  1. 1.中国科学院 地球深部重点实验室,地质与地球物理研究所,北京 100029
    2.中国科学院 研究生院,北京 100049

Abstract: In the standard Particle Swarm Optimization(PSO),the premature convergence of particles and slow convergence in the late process decrease the searching ability of the algorithm.By taking the positions of the particles into consideration,an Improved PSO algorithm with Position Weighted(IPSO_PW),which can increase the efficiency,to reduce the blindness in the search process is proposed.The numerical results show that the speed of the convergence depends on the position weighted factor of IPSO_PW.By choosing appropriate weighting factor,the computational efficiency of the algorithm can be improved effectively.This algorithm is also suitable for wave equation inversion problems in geophysical optimization areas.

Key words: standard PSO, position weighted, weighting factor

摘要: 针对基本粒子群算法具有后期收敛速度慢、容易陷入局部极值等缺陷,通过考虑粒子的位置之间的加权作用,对基本粒子群算法进行了改进,提出了一种位置加权的粒子群算法以减小搜索过程中的盲目性。测试函数结果表明,算法的收敛性以及收敛速度与粒子群算法位置加权因子有很大关系,通过选择合适的加权因子能有效提高算法的计算效率,算法适用于地球物理优化领域的波动方程反问题。

关键词: 基本粒子群算法, 位置加权, 加权因子