Computer Engineering and Applications ›› 2011, Vol. 47 ›› Issue (5): 210-212.

• 图形、图像、模式识别 • Previous Articles     Next Articles

Improved algorithm of feature extraction based on wavelet packet for voice

WU Liangchun,PAN Shiyong,HE Jinrui,ZHANG Donghai   

  1. College of Mathematics and Computer,Xihua University,Chengdu 610039,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-02-11 Published:2011-02-11

改进的基于小波包变换的语音特征提取算法

吴亮春,潘世永,何金瑞,张东海   

  1. 西华大学 数学与计算机学院,成都 610039

Abstract: To solve the problem of causing information loss under the short-time analysis in the non-stationary characteristics,a kind of method to distinguish the Formant using Wavelet Packet Transform(FDWPT) is proposed.Firstly,the method applies wavelet packet transform to the speech signal.So a wavelet decomposing value is gotten and then combined with the formant features.The appropriate node is selected to establish the characteristic parameters of formant.Lastly VQ model is used to identify the parameters,and the effect of distinguish is enhanced greatly.

Key words: wavelet packet transform, formant, multi-resolution analysis, speaker recognition

摘要: 针对语音信号的非平稳特性,传统的应用短时分析技术容易丢失信息的现状,提出了一种利用小波包变换的技术对语音信号的共振峰特征(FDWPT)进行提取的方法。对整个语音信号进行多分辨分析的小波包变换,这样可以得到每个频带的小波分解值,结合共振峰的频率特性,选取适当的小波包分解结点,对这些结点建立共振峰参数,使用矢量量化模型进行识别,从而提高了说话人识别的效果。

关键词: 小波包变换, 共振峰, 多分辨分析, 说话人识别