Computer Engineering and Applications ›› 2011, Vol. 47 ›› Issue (12): 49-51.

• 网络、通信、安全 • Previous Articles     Next Articles

Web page classification method based on ACA-SVM with quantum features

ZUO Jinglong,YU Guilan   

  1. College of Computer and Electronic Information,Guangdong University of Petrochemical Technology,Maoming,Guangdong 525000,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-04-21 Published:2011-04-21

具有量子特性的ACA-SVM网页分类方法

左敬龙,余桂兰   

  1. 广东石油化工学院 计算机与电子信息学院,广东 茂名 525000

Abstract: To solve the SVM classification problem of high computational complexity and not suited to large-scale scenes,ACA-SVM with quantum features of Chinese web pages classification is proposed.It improves the algorithm and proposes a strategy for dynamic adjustment of rotation angle.Tests shows that the method improves the accuracy,recall and processing time.

Key words: quantum features, Ant Colony Algorithm-Support Vector Machines(ACA-SVM), web page classification, dynamic adjustment strategy

摘要: 为了克服SVM网页分类计算复杂度高、不适应大规模场景的问题,提出了将具有量子特性的ACA和SVM进行融合的中文网页分类方法;对算法进行改进,提出了一种动态调整旋转门旋转角的策略。实验表明,该方法在精度、召回率及处理时间上均有明显提高。

关键词: 量子特性, 蚁群算法-支持向量机(ACA-SVM), 网页分类, 动态调整策略