Computer Engineering and Applications ›› 2011, Vol. 47 ›› Issue (1): 150-153.DOI: 10.3778/j.issn.1002-8331.2011.01.041

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Imbalance classification combining cost-sensitive and majority class decomposition

JIAN Tao,LI Hong,GUO Yuejian   

  1. School of Information Science and Engineering,Central South University,Changsha 410083,China
  • Received:2009-04-23 Revised:2009-06-18 Online:2011-01-01 Published:2011-01-01
  • Contact: JIAN Tao

结合代价敏感及多数类分解的非平衡分类

蹇 涛,李 宏,郭跃健   

  1. 中南大学 信息科学与工程学院,长沙 410083
  • 通讯作者: 蹇 涛

Abstract: This paper proposes an improved method called CLCC(Classification using Local Clustering with Cost-sensitive)which combines cost-sensitive and majority class decomposition.Using local cluster in the majority class can make a balance between the majority class and the minority class.And the introduction of cost-sensitive to the iterative learning process makes large improvements of the misclassification ratio of the minority class and dataset.Thus,the accuracy of the minority class is enhanced while the classification cost is decreased.The experimental results confirm that this algorithm is superior to the traditional algorithms as for dealing with the imbalanced problem.

摘要: 提出了一种结合代价敏感及多数类分解的算法CLCC(Classification using Local Clustering with Cost-sensitive)。CLCC通过在多数类中使用局部聚类使得类别之间达到平衡,再引入代价敏感使得整体和少数类的分类错误率在迭代学习过程中不断地降低,提高了少数类的精度以及降低了整体的分类代价。实验结果验证了该算法在处理非平衡类问题时比传统算法要优越。

CLC Number: