Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (27): 182-184.DOI: 10.3778/j.issn.1002-8331.2010.27.051

• 图形、图像、模式识别 • Previous Articles     Next Articles

Handwritten numeral recognition based on dynamic weichted multi-classifier integration

DU Min,ZHAO Quan-you   

  1. Institute of Information and Engineering,Hunan University of Science and Engineering,Yongzhou,Hunan 425100,China
  • Received:2009-02-25 Revised:2009-04-27 Online:2010-09-21 Published:2010-09-21
  • Contact: DU Min

基于动态权值集成的手写数字识别方法

杜 敏,赵全友   

  1. 湖南科技学院 信息工程学院,湖南 永州 425100
  • 通讯作者: 杜 敏

Abstract: A dynamic weight multi-classifier integration handwritten numeral recognition method is presented.This method adopts BP neural network method,sets different neural network classifiers’ vectors for different input vectors.By setting the right dynamic value,it proceeds system integration for output vectors based on dynamic weight multi-classifier integration.The experimental result indicates this system has high classification rate and the higher precision.

摘要: 提出了一种基于动态权值集成的多分类器手写数字识别方法。该方法采用BP神经网络的方法,对不同的特征输入向量构建不同的神经网络分类器,通过设定动态权值,进而对不同的分类器的输出向量采用多类器集成方法进行系统集成。实验结果表明该方法具有较高的识别率和识别精度。

CLC Number: