Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (20): 207-209.DOI: 10.3778/j.issn.1002-8331.2010.20.056

• 人工智能 • Previous Articles     Next Articles

De-noising method for medical ultrasonic image using ROF model

MA Jia-chen,LI Jian-gang,SUN Ming-jian   

  1. School of Information Science and Engineering,Harbin Institute of Technology at Weihai,Weihai,Shandong 264209,China
  • Received:2010-04-15 Revised:2010-05-17 Online:2010-07-11 Published:2010-07-11
  • Contact: MA Jia-chen

应用ROF模型的医学超声图像去噪方法

马家辰,李建刚,孙明健   

  1. 哈尔滨工业大学(威海) 信息科学与工程学院,山东 威海 264209
  • 通讯作者: 马家辰

Abstract: There are always lots of speckle noises in medical ultrasonic images because of the imaging mechanism.These speckle noises significantly reduce the clarity of the image and as a result,cause great difficulties in ultrasound diagnosis.To solve this problem,this paper presents a new de-noising method for medical ultrasonic image based on ROF model and adaptive wavelet threshold de-noising method.In addition to inhibiting the speckle noises in the medical ultrasonic image,this method can retain and even enhance the image detail information as much as possible.

Key words: speckle noise, frame correlation, Global Phase Coherence(GPC), ROF model, adaptive wavelet threshold

摘要: 由于超声成像机制使医学超声图像中存在着大量的斑点噪声,这些斑点噪声大大降低了图像的清晰度和质量,给超声诊断带来很大的困难。针对医学超声图像的斑点噪声去噪问题,提出了一种基于帧相关处理、ROF分解和自适应小波阈值的去噪方法,能够在抑制超声图像斑点噪声的同时,尽可能地保留甚至增强图像的细节信息,大大提高图像质量,取得了很好的效果。

关键词: 斑点噪声, 帧相关, 全局相位相干性, ROF模型, 自适应小波阈值

CLC Number: