Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (8): 44-46.DOI: 10.3778/j.issn.1002-8331.2009.08.014

• 研究、探讨 • Previous Articles     Next Articles

Improved Pareto Fitness Genetic Algorithm for multi-objective combinatorial optimization

YANG Kai-bing1,2,LIU Xiao-bing2   

  1. 1.College of Information Science and Engineering,Dalian Polytechnic University,Dalian,Liaoning 116034,China
    2.CIMS Center,Dalian University of Technology,Dalian,Liaoning 116024,China
  • Received:2008-01-21 Revised:2008-04-16 Online:2009-03-11 Published:2009-03-11
  • Contact: YANG Kai-bing

求解多目标组合优化的改进Pareto适应度遗传算法

杨开兵1,2,刘晓冰2   

  1. 1.大连工业大学 信息科学与工程学院,辽宁 大连 116034
    2.大连理工大学 CIMS中心,辽宁 大连 116024
  • 通讯作者: 杨开兵

Abstract: Combining Pareto Fitness Genetic Algorithm(PFGA) with local search,an Improved Pareto Fitness Genetic Algorithm(IPFGA) for multi-objective combinatorial optimization is proposed.In the proposed algorithm,a local search procedure is applied to each solution generated by genetic operations.The concept of Pareto dominance is used in the local search procedure,and the idea of crowding distance in the external population is used to perform elitism.The experimental results show that the IPFGA,compared with the known PFGA,has faster convergent speed.

Key words: multi-objective combinatorial optimization, Pareto Fitness Genetic Algorithm(PFGA), local search

摘要: 将Pareto适应度遗传算法(PFGA)与局部搜索相结合,提出了一种用于求解多目标组合优化问题的改进算法IPFGA,该算法基于Pareto支配关系对遗传操作产生的每一个个体进行局部搜索,并采取在外部群体中引入拥挤距离的精英选择策略。实验结果表明,与PFGA相比,IPFGA有更快的收敛速度。

关键词: 多目标组合优化, Pareto适应度遗传算法, 局部搜索