Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (35): 44-46.DOI: 10.3778/j.issn.1002-8331.2009.35.014

• 研究、探讨 • Previous Articles     Next Articles

New parallel Particle Swarm Optimization based on cultural algorithm

WU Lie-yang1,SUN Hui2,BAI Ming-ming1,LI Min1   

  1. 1.School of Computer,Nanchang Hangkong University,Nanchang 330063,China
    2.Department of Computer Science and Technology,Nanchang Institute of Technology,Nanchang 330099,China
  • Received:2008-12-23 Revised:2009-02-17 Online:2009-12-11 Published:2009-12-11
  • Contact: WU Lie-yang

一种新的并行文化微粒群优化算法

吴烈阳1,孙 辉2,白明明1,李 敏1   

  1. 1.南昌航空大学 计算机学院,南昌 330063
    2.南昌工程学院 计算机科学与技术系,南昌 330099
  • 通讯作者: 吴烈阳

Abstract: In order to avoid being subject to falling into local optimum when particle swarm optimization algorithm solves some complicated problems,improve the diversity of the population.A new parallel particle swarm optimization algorithm based on cultural algorithm frame is proposed,which makes the particle swarm optimization bring into cultural algorithm frame.In the cultural algorithm frame,population space and belief space composed by particle swarm have their own parallel evolution process and affect with each other,improve the diversity of population and reduce the possibility of falling into local optima effectively.It is proven that the improved parallel particle swarm optimization based on cultural algorithm can be better to find the global optima on different benchmark optimization functions,and improve the global search capability.

摘要: 为了避免微粒群优化算法在解决复杂优化问题时陷入局部最优,提高算法种群的多样性。将微粒群优化算法纳入文化算法框架,提出了一种新的基于文化算法框架的并行微粒群优化算法。在文化算法框架中,由微粒群组成的群体空间和信念空间各自独立并行演化,并相互影响,有效地提高了种群的多样性,降低了陷入局部极值的可能性。通过对不同测试函数的仿真实验表明,新提出的并行文化微粒群优化算法比标准微粒群优化算法更容易找到全局最优解,提高了微粒群优化算法的全局寻优能力。

CLC Number: