Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (35): 139-141.DOI: 10.3778/j.issn.1002-8331.2009.35.042

• 数据库、信号与信息处理 • Previous Articles     Next Articles

New clustering algorithm based on Particle Swarm Optimization and simulated annealing

DONG Jin-xin,QI Min-yong   

  1. College of Computer Science,Liaocheng University,Liaocheng,Shandong 252059,China
  • Received:2009-08-05 Revised:2009-10-09 Online:2009-12-11 Published:2009-12-11
  • Contact: DONG Jin-xin

一种新的基于粒子群和模拟退火的聚类算法

董金新,亓民勇   

  1. 聊城大学 计算机学院,山东 聊城 252059
  • 通讯作者: 董金新

Abstract: A new clustering algorithm is proposed based on particle swarm optimization and simulated annealing.The particle swarm is composed of particles,and each particle is a possible solution of the clustering problem,the position of the particle is represented by cluster center vector.To escape from local optimum,two solutions are proposed using the probabilistic jumping property of simulated annealing algorithm combined with the clustering problem.The experimental results on different datasets show that the new algorithm has enhanced the global search ability,has better performance than particle swarm optimization and K-means algorithm,has better global convergence,and it is an effective clustering algorithm.

摘要: 提出了一种新的基于粒子群和模拟退火的聚类算法。每个粒子作为聚类问题的一个可行解组成粒子群,粒子的位置由聚类中心向量表示。为避免粒子群陷入局部最优解,结合聚类问题的实际特点,提出了利用模拟退火的概率突跳性的两个解决方案。实验结果表明,新算法增强了全空间的搜索能力,性能优于粒子群算法和传统的K-means算法,具有较好的收敛性,是一种有效的聚类算法。

CLC Number: