Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (26): 182-184.DOI: 10.3778/j.issn.1002-8331.2009.26.054

• 图形、图像、模式识别 • Previous Articles     Next Articles

MAP image restoration in dual-tree complex wavelet transform domain

YAN He,LIU Jia-ling,ZHANG Xiao-chuan   

  1. Department of Computer Science,Chongqing Institute of Technology,Chongqing 400054,China
  • Received:2008-10-30 Revised:2008-12-03 Online:2009-09-11 Published:2009-09-11
  • Contact: YAN He

复小波域最大后验概率图像复原

闫 河,刘加伶,张小川   

  1. 重庆工学院 计算机系,重庆 400054
  • 通讯作者: 闫 河

Abstract: A novel MAP image restoration method in Dual-tree Complex Wavelet Transform(DCWT) domain is proposed.The residual noisy sub-image in iterative process of Poisson-MAP restoration algorithm is set,and the noise in the residual noisy sub-image is suppressed by using of DCWT zero mean Gaussian distributing model denoising method.So,the problem of noise magnification in original Poisson-MAP restoration algorithm can be solved and the regularization purpose of iterative restoration algorithm is realized.Experimental results show that the proposed restoration algorithm is possible to achieve an excellent balance both restrains noise amplification effectively and preserves as many image details and edges as possible,especially under low SNR conditions.

Key words: image restoration, Dual-tree Complex Wavelet Transform(DCWT), zero mean Gaussian model, Poisson-Maximum a Posteriori(MAP)

摘要: 提出了一种双树复小波变换域最大后验概率图像复原方法。该方法通过在最大后验概率图像迭代复原过程中构建噪声残差,并采用双树复小波变换零均值高斯模型对参差进行降噪处理,从而避免了原泊松最大后验概率图像复原过程中噪声放大的问题,实现了迭代复原的正则化目的。对比实验结果表明,该图像复原方法能很好解决恢复迭代中噪声放大的问题,同时,在视觉效果、PSNR、ISNR等指标上均比Wiener、Pisson-MAP等算法好。

关键词: 图像复原, 双树复小波变换, 零均值高斯模型, 泊松最大后验概率

CLC Number: