Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (25): 58-61.DOI: 10.3778/j.issn.1002-8331.2009.25.018

• 研究、探讨 • Previous Articles     Next Articles

Sequential particle-probability hypothesis density tracking algorithm

LIN Huan-shan,DONG Fu-an,ZHU Lin-hu,QI Li-feng   

  1. School of Science,Air Force Engineering University,Xi’an 710051,China
  • Received:2008-05-26 Revised:2008-08-25 Online:2009-09-01 Published:2009-09-01
  • Contact: LIN Huan-shan

有序粒子概率假定密度跟踪算法

林焕杉,董福安,朱林户,齐立峰   

  1. 空军工程大学 理学院,西安 710051
  • 通讯作者: 林焕杉

Abstract: For the problem of the difficulty in extending single sensor Probability Hypothesis Density(PHD) filtering to the multi-sensor case,a new sequential particle-PHD tracking algorithm is proposed.First,the general theoretical model of centralized multi-sensor particle-PHD filtering is deduced.Then,the importance density function with regard to multiple sensors is chosen according to the characteristics of centralized fusion system.The resampling particles are updated via multiple sensors.So multi-target multi-sensor sequential particle-PHD tracking is implemented.Experimental results show that the tracking miss distance of the proposed algorithm is less than single sensor particle-PHD tracking algorithm and it has better tracking behavior.

Key words: multi-sensor, random set, fusion system, multi-target tracking

摘要: 针对由单传感器概率假定密度滤波到多传感器情形推导困难的问题,提出了一种有序粒子概率假定密度跟踪算法。首先,推导出集中式多传感器粒子概率假定密度滤波模型,再根据集中式融合系统的特点,选取与多传感器相关的重要性密度函数,通过多传感器多步更新重采样粒子,从而实现多传感器多目标有序粒子概率假定密度跟踪。仿真结果表明,该算法的跟踪误差距离差要小于单传感器粒子概率假定密度跟踪算法,且具有更优越的跟踪性能。

关键词: 多传感器, 随机集, 融合系统, 多目标跟踪

CLC Number: