Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (21): 61-63.DOI: 10.3778/j.issn.1002-8331.2009.21.016

• 研发、设计、测试 • Previous Articles     Next Articles

Codebook design method of using discrete Hopfield neural networks

LEI Chao-yang1,ZHONG Yi-qing2   

  1. 1.Department of Computer Engineering,Changsha Tel. & Tec. Vocational College,Changsha 410015,China
    2.Department of Computer Engineering,Hunan Env. & Bio. Vocational College,Hengyang,Hunan 421005,China
  • Received:2008-06-13 Revised:2008-09-16 Online:2009-07-21 Published:2009-07-21
  • Contact: LEI Chao-yang

利用离散Hopfield网络的码本设计方法

雷超阳1,钟一青2   

  1. 1.长沙通信职业技术学院 计算机工程系,长沙 410015
    2.湖南环境生物职业技术学院 计算机工程系,湖南 衡阳 421005
  • 通讯作者: 雷超阳

Abstract: This paper proposes codebook design method of using discrete hopfield neural networks.Based on analysis of the LBG algorithm and features of discrete hopfield neural networks,this method builts a clustering form;the clustering form works with the asynchronous mode of discrete hopfield neural network,and abtains the final codebook.Experimental results indicate that PSNR can be increased 2.742 to 3.825 dB.This method is more effective than the traditional LBG algorithm.

Key words: codebook, LBG algorithm, Hopfield neural nework, Peak Signal to Noise Ratio(PSNR)

摘要: 论文提出了一种利用Hopfield网络的码本设计方法,分析了LBG算法和离散Hopfield网络的特点,针对该特点构造聚类表格,并按离散Hopfield神经网络串行方式运行,从而得到最终码字集。通过实验表明,在码本大小相同的情况下,峰值信噪比提高了2.742~3.825 dB,生成的码本质量较传统的LBG算法更加有效。

关键词: 码本, LBG算法, Hopfield网络, 峰值信噪比