Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (18): 239-241.DOI: 10.3778/j.issn.1002-8331.2009.18.072

• 工程与应用 • Previous Articles     Next Articles

Application of LVQ clustering algorithm to identification of explosive by THz spectroscopy

ZHAO Jing-jing1,GE Qing-ping1,ZHANG Cun-lin2   

  1. 1.College of Information Engineering,Capital Normal University,Beijing 100037,China
    2.Department of Physics,Capital Normal University,Beijing 100037,China
  • Received:2008-04-22 Revised:2008-07-11 Online:2009-06-21 Published:2009-06-21
  • Contact: ZHAO Jing-jing

LVQ聚类算法在爆炸物THz光谱识别中的应用

赵晶晶1,葛庆平1,张存林2   

  1. 1.首都师范大学 信息工程学院,北京 100037
    2.首都师范大学 物理系,北京 100037
  • 通讯作者: 赵晶晶

Abstract: The terahertz(THz) technologies is one research hotspot in the domain of detecting explosive.Because the result gotten by clustered with original frequency-domain pattern is not satisfactory.This paper introduces second derivative curve that transformed from frequency-domain THz spectrum.Based on LVQ clustering algorithm and the new characteristic curve,an automatic detection system is designed and finished by VC++6.0.Appling LVQ to identification of explosive by THz spectroscopy.Experiment to the four kinds of explosive:RDX,DNT,TNT and HMX,trained with original frequency-domain pattern,the correct rate is 96%.After computing effective feature from transformed data,input to the same network,the correct rate up to 100%.The result shows that the system based on LVQ can be very capable of similar character clustering and has higher rate of identification.

Key words: The terahertz(THz), neural network, Learning Vector Quantization(LVQ) clustering algorithm

摘要: 运用THz光谱特性进行爆炸物的识别,是现代检测技术研究的一个热点。由于直接对原始数据进行聚类的识别率并不理想,首先对实验样本的THz频域光谱数据曲线进行二阶导数变换,得到了更能表现数据变化趋势和峰值的特征曲线,然后基于该特征曲线利用LVQ神经网络聚类算法,设计并用VC++6.0实现了THz光谱自动分类识别系统。分别对RDX、DNT、TNT、HMX四种爆炸物进行识别对比实验,运用原始数据训练出的分类器,识别率为96%,运用变换过后的特征数据训练出的LVQ分类器,识别率可以达到100%。实验证明,所设计的基于LVQ的神经网络分类器具有强大相似特征聚类功能和较高的识别率。

关键词: THz技术, 神经网络, 学习矢量化网络(LVQ)聚类算法