Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (15): 51-53.DOI: 10.3778/j.issn.1002-8331.2009.15.015

• 研究、探讨 • Previous Articles     Next Articles

Novel hybrid optimization algorithm and applications

QU Liang-dong,HE Deng-xu   

  1. College of Mathematics and Computer Science,Guangxi University for Nationlities,Nanning 530006,China
  • Received:2008-03-28 Revised:2008-06-02 Online:2009-05-21 Published:2009-05-21
  • Contact: QU Liang-dong

新的混合优化算法及其应用

曲良东,何登旭   

  1. 广西民族大学 数学与计算机科学学院,南宁 530006
  • 通讯作者: 曲良东

Abstract: After analyzing the disadvantages of original Artificial Fish-School Algorithm(AFSA) and (1+1)-Evolution Strategies(ES),a novel hybrid optimization algorithm is proposed.By adding history best fish and remembering (1+1)-ES to original AFSA in evolution process,the ability to break away from the disadvantages of original AFSA is greatly improved.The tests of several classic functions and application models show that the proposed algorithm can greatly improve the ability of seeking the global excellent result and convergence speed and accuracy.It is significantly superior to original AFSA and (1+1)-ES.

Key words: Artificial Fish School Algorithm(AFSA), Evolution Strategies(ES), hybrid optimization algorithm

摘要: 针对基本人工鱼群算法中人工鱼漫无目的随机游动或在非全局极值点的大量聚集和(1+1)-ES的不足,充分利用公告板中的历史最优鱼和(1+1)-ES的优点,提出了一种新的混合优化算法。通过测试函数和应用实例测试验证,结果表明新算法显著提高了基本AFSA和(1+1)-ES的求解质量和运行效率,该算法是可行的和有效的。

关键词: 人工鱼群算法, 进化策略, 混合优化算法