Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (12): 184-186.DOI: 10.3778/j.issn.1002-8331.2009.12.059

• 图形、图像、模式识别 • Previous Articles     Next Articles

Mean-Shift tracking algorithm combined with Kalman filter

LIU Ji-yan1,PAN Jian-shou1,WU Ya-peng1,WANG Bin1,FU Yong2   

  1. 1.College of Information Science and Technology,Northwest University,Xi’an 710127,China
    2.College of Electronic Information,Northwestern Polytechnical University,Xi’an 710072,China
  • Received:2008-03-07 Revised:2008-05-15 Online:2009-04-21 Published:2009-04-21
  • Contact: LIU Ji-yan

结合Kalman滤波器的Mean-Shift跟踪算法

刘继艳1,潘建寿1,吴亚鹏1,王 宾1,付 勇2   

  1. 1.西北大学 信息科学与技术学院,西安 710127
    2.西北工业大学 电子信息学院,西安 710072
  • 通讯作者: 刘继艳

Abstract: Classical Mean-Shift algorithm requires that the adjacent two frames target template must have overlap areas.In order to resolve this weak point,an improved algorithm combined with Kalman filter is proposed.First,Kalman filter predicts a position which is to be the initial search center in Mean-Shift algorithm to track.Then,Mean-Shift gets a new target position which is used to be the input parameter of the next Kalman filter.Experimental results show that the algorithm not only can resolve problem which the adjacent two frames target template areas do not overlap because of target velocity changing suddenly or target moving fastly,but also has good performance in ordinary shelter problem.

摘要: 针对经典Mean-Shift算法要求相邻两帧间目标模板区域必须重叠的缺陷,结合Kalman滤波器,提出了改进算法。算法首先将Kalman滤波器预测的目标位置作为Mean-Shift算法中的初始搜索中心进行跟踪,然后再将Mean-Shift算法得到的新的目标位置作为下一帧Kalman滤波器的输入参数,循环执行。实验证明,该算法能够解决由于目标运动速度突然变化以及目标快速运动情况下所带来的相邻两帧间目标模板区域非重叠问题,而且对于一般的遮挡问题也能得到较好的效果。