Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (10): 226-230.DOI: 10.3778/j.issn.1002-8331.2009.10.068

• 工程与应用 • Previous Articles     Next Articles

Evaluation of knowledge-sharing efficiency based on R-RNN

LI Xiao-li,YANG Yu,YANG Jie,WANG Wei-li,ZENG Qiang,SONG Li-jun   

  1. College of Mechanical Engineering,Chongqing University,Chongqing 400030,China
  • Received:2008-02-25 Revised:2008-06-30 Online:2009-04-01 Published:2009-04-01
  • Contact: LI Xiao-li

知识共享效率的R-RNN评价模型研究及应用

李晓利,杨 育,杨 洁,王伟立,曾 强,宋李俊   

  1. 重庆大学 机械工程学院,重庆 400030
  • 通讯作者: 李晓利

Abstract: Because of the lack of efficiency evaluation method,the knowledge-sharing efficiency evaluation model based on rough sets and RBF neural network(Rough Set and Radial Basis Function Neural Network,R-RNN) is proposed in this paper.Firstly,the process of knowledge-sharing is researched,the efficiency affecting factors of knowledge-sharing is analyzed,and then the index system of efficiency evaluation is constructed.Secondly,the theory of rough set is utilized to rationalize the knowledge-sharing efficiency evaluation index system and reduce the input dimensionality of RBF neural network.Then,RBF neural network is used to get the synthetic evaluation value of knowledge-sharing efficiency.Finally,an application example is given to validate the feasibility and effectiveness of the model.

Key words: knowledge sharing, efficiency evaluation, index system, rough set, Radial Basis Function(RBF) neural network

摘要: 针对企业知识共享效率评价方法缺乏的现状,提出了基于粗糙集和RBF神经网络的R-RNN知识共享效率评价模型。在研究知识共享活动基本过程的基础上,分析了知识共享效率影响因素,得出效率评价指标体系。然后,运用粗糙集理论对评价指标进行预处理,去除冗余指标项,在合理化评价指标体系的同时减少网络输入维度,进而采用RBF神经网络对知识共享效率进行综合评价。最后通过具体的应用实例验证了该评价模型的有效性与可行性。

关键词: 知识共享, 效率评价, 指标体系, 粗糙集, RBF神经网络