Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (10): 138-140.DOI: 10.3778/j.issn.1002-8331.2009.10.041

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Regularization method for ICA with reference

LI Chang-li1,2,LIAO Gui-sheng1   

  1. 1.National Key Lab for Radar Signal Processing,Xidian University,Xi’an 710071,China
    2.School of Information Engineering,Guangdong Ocean University,Zhanjiang,Guangdong 524088,China
  • Received:2008-11-17 Revised:2008-12-19 Online:2009-04-01 Published:2009-04-01
  • Contact: LI Chang-li

参考独立分量的正则化方法

李昌利1,2,廖桂生1   

  1. 1.西安电子科技大学 雷达信号处理国家重点实验室,西安 710071
    2.广东海洋大学 信息学院,广东 湛江 524088

  • 通讯作者: 李昌利

Abstract: Independent Component Analysis with Reference(ICA-R) utilizes a priori information or reference signal and achieves good separation results,but its threshold parameter is very hard to determine and its computation load is very great.Theoretic analysis and experiments shows ICA-R even can’t converge if the threshold is improperly selected.By inserting the closeness measure function of ICA-R as a regularization term into the usual negentropy contrast function for FastICA,a very simple improved algorithm is proposed.Experiments with synthetic signals,real ECG data demonstrate its quick convergence,good separation and flexible selection for the regularization parameter as well as.

摘要: 参考独立分量分析(ICA with Reference,ICA-R)充分利用先验知识或参考信号,取得了很好的分离效果,但其中的阈值参数很难选取,且计算量很大。理论分析和实验表明,若阈值选取不当,算法甚至不收敛。通过在FastICA算法的负熵对比度函数中引入ICA-R算法中的接近性度量函数作为正则化项,得到一个简单的改进算法。针对合成数据和实际的ECG数据的仿真实验表明,算法收敛快、提取效果好,同时正则化参数取值非常灵活。