Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (9): 51-54.
• 理论研究 • Previous Articles Next Articles
LI Xiao-yuan,LI Mei-yi,SONG Ling
Received:
Revised:
Online:
Published:
Contact:
李孝源,李枚毅,宋 凌
通讯作者:
Abstract: The purpose of this paper is to present a modified Particle Swarm Optimization(PSO) algorithm applied to the complex dynamic environment.The method presented is defined as Improve Niche Particle Swarm Optimizer(IN-PSO).It can improve the reliability and accuracy while tracking dynamic pole in dynamic environment and avoid converge to a optimality.The environment used in these experiments is generated by Dynamic Function # 1(DF1).The results of the experiments elucidate that IN-PSO is more adaptive than Adaptive Particle Swarm Optimizer(APSO).
Key words: dynamic environment, niche, PSO, DF1
摘要: 为了提高在动态环境下追踪变化的极点的可靠性和精确性的能力,避免算法收敛于一个最优解,提出了一种改进的小生境微粒群算法。使用DF1(Dynamic Function 1)生成的复杂动态环境对这种算法进行了验证,并与经典的APSO(Adaptive Particle Swarm Optimizer)算法进行了对比,实验结果表明了该算法的有效性。
关键词: 动态环境, 小生境, 微粒群算法, DF1
LI Xiao-yuan,LI Mei-yi,SONG Ling. Improved niche Particle Swarm Optimizer in dynamic environment[J]. Computer Engineering and Applications, 2008, 44(9): 51-54.
李孝源,李枚毅,宋 凌. 动态环境下一种改进的小生境粒子群算法[J]. 计算机工程与应用, 2008, 44(9): 51-54.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2008/V44/I9/51