Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (7): 234-237.

• 工程与应用 • Previous Articles     Next Articles

Research and application on TCM diagnosis mining base on Rough Sets

DING Wei-ping1,GUAN Zhi-jin1,2,GU Chun-hua3   

  1. 1.School of Computer Science and Technology,Nantong University,Nantong,Jiangsu 226019,China
    2.College of Information Science and Technology,Nanhang University,Nanjing 210003,China
    3.Nantong China Medicine Hospitial,Nantong,Jiangsu 226006,China
  • Received:2007-07-02 Revised:2007-09-24 Online:2008-03-01 Published:2008-03-01
  • Contact: DING Wei-ping

基于Rough Sets的中医指症挖掘研究与应用

丁卫平1,管致锦1,2,顾春华3   

  1. 1.南通大学 计算机科学与技术学院,江苏 南通 226019
    2.南京航空航天大学 信息科学与计算机学院,南京 210003
    3.南通市中医院,江苏 南通 226006
  • 通讯作者: 丁卫平

Abstract: According to the problems existing which include the much larger numbers of dimensions of the sample,much heavier data features and redundant attribution of TCM(Traditional Chinese Medicine) diagnosis,the paper provid the GENRED_GROWTH TCM diagnosis algorithm combining the frequency with the importance of attribution on the basic of research and study of the basic theory and attribution reduction of Rough Sets.Meanwhile the algorithm is applied in the prototype data mining experiment on TCM diagnosis.The results show that the algorithm can be used to reduce redundant attributes in data mining on TCM diagnosis,and the classification accuracy is higher.And it performs accurately on TCM diagnosis datasets.The useful information for the diagnosis can be extracted in order to help to provide some decision-making for the assistant diagnoses.

摘要: 针对中医病历数据库中指症样本维数较大、数据特征和属性冗余量较多等特征,在对Rough Sets基本理论和属性约简算法研究的基础上,提出了将属性频度和属性重要性相结合的GENRED_GROWTH中医指症挖掘算法,并进行了基于GENRED_GROWTH的中医指症挖掘原型系统设计与实现。通过分析和实验结果表明:该算法能较好地进行中医指症属性约简,分类精度较高,并且能抽取中医指症相关诊断规则以辅助医生的诊断和治疗。