Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (34): 213-215.DOI: 10.3778/j.issn.1002-8331.2008.34.065

• 工程与应用 • Previous Articles     Next Articles

Application of LVQ neural network in traffic incident detection

ZHU Hong-bin   

  1. College of Computer and Information Engineering,Lishui University,Lishui,Zhejiang 323000,China
  • Received:2007-08-20 Revised:2008-02-14 Online:2008-12-01 Published:2008-12-01
  • Contact: ZHU Hong-bin

LVQ神经网络在交通事件检测中的应用

朱红斌   

  1. 丽水学院 计算机与信息工程学院,浙江 丽水 323000
  • 通讯作者: 朱红斌

Abstract: A novel method is proposed for traffic incidents detection based on LVQ neural network.The features of flow and occupancy rate are extracted from traffic incidents.Then LVQ neural network is used to classify the traffic incidents.LVQ has a simple network structure,but it is very effective and robust in traffic incidents detection.In order to improve the precision of the LVQ neural network for traffic incidents detection,Boosting algorithm is used to build an integration-neural network.Finally the simulation with Matlab shows the algorithm can get better performance.

Key words: Boosting algorithm, LVQ neural network, classify, traffic incident detection

摘要: 提出一种基于LVQ神经网络的交通事件检测方法。提取上下游的流量和占有率为特征,LVQ神经网络作为分类器进行交通事件自动检测。LVQ网络结构简单,但却表现出比BP神经网络更强的有效性和鲁棒性。为进一步提高神经网络的泛化能力,采用改进的Boosting算法,进行网络集成。运用Matlab 进行了仿真分析,结果表明提出的交通事件检测算法具有良好的检测性能。

关键词: Boosting算法, LVQ神经网络, 分类器, 交通事件检测