Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (27): 162-164.DOI: 10.3778/j.issn.1002-8331.2008.27.052
• 数据库、信号与信息处理 • Previous Articles Next Articles
QIANG Yan,CHEN Jun-jie,GAO Yan-fei
Received:
Revised:
Online:
Published:
Contact:
强 彦,陈俊杰,高燕飞
通讯作者:
Abstract: In autonomic database system,workload characterization is a key part.In workload characterization,workload should be classified,then anticipate workload performance.Workload classification uses cluster algorithm.And in cluster algorithm,the typical is the K-means cluster algorithm.But in the K-means cluster algorithm,k should be defined and not changed.This paper makes an improvement in the algorithm,so the k is changed if needed.The result of the experiment shows that the veracity using Cluster algorithm Based on Feature Vectors(CFV) making of forecasting workload runtime is improved.
摘要: 负载自适应数据库系统中,负载特征化部件要实时对各种数据库的访问负载分类,根据分类的情况预测负载对数据库资源需求。是对常规聚类算法的一个改进,提出基于特征向量的聚类算法和基于特征向量的增量聚类算法。使用该算法后负载分类速度和准确性有明显提高。
QIANG Yan,CHEN Jun-jie,GAO Yan-fei. Research of cluster based on feature vectors in autonomic database[J]. Computer Engineering and Applications, 2008, 44(27): 162-164.
强 彦,陈俊杰,高燕飞. 自适应数据库中基于特征向量的聚类算法[J]. 计算机工程与应用, 2008, 44(27): 162-164.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2008.27.052
http://cea.ceaj.org/EN/Y2008/V44/I27/162