Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (27): 145-147.DOI: 10.3778/j.issn.1002-8331.2008.27.046

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Algorithm on rule extraction based on rough set and neural network theory

ZHANG Shao-bing1,JI Yan-fu2   

  1. 1.College of Computer and Information Engineering,Heilongjiang Institute of Science and Technology,Harbin 150027,China
    2.College of Electronic and Information Engineering,Heilongjiang Institute of Science and Technology,Harbin 150027,China
  • Received:2007-11-13 Revised:2008-02-18 Online:2008-09-21 Published:2008-09-21
  • Contact: ZHANG Shao-bing

基于粗糙集和神经网络理论的规则提取算法

张绍兵1,季厌浮2   

  1. 1.黑龙江科技学院 计算机与信息工程学院,哈尔滨 150027
    2.黑龙江科技学院 电气与信息工程学院,哈尔滨 150027
  • 通讯作者: 张绍兵

Abstract: This paper proposes a method for rule extraction based on rough set and neural network.Firstly,this paper disperses initial data set and initiative reduces condition attributes of decision-making table using rough set,then learns and forecasts data using neural network and filtrates yawp of decision-making table through deleting unclassified data,finally reduces rules using value reduction algorithm of rough set.The experiment proves that this method is quick and effective,and can remain high robustness of neural network avoiding the difficulty to extract rules from neural network compared to traditional rule extraction algorithms.

摘要: 提出了一种基于粗糙集和神经网络组合进行规则提取的方法。首先对初始数据集进行离散化,并利用粗糙集对决策表中的条件属性进行初步约简,然后利用神经网络对数据进行学习和预测,并通过删除网络不能分类的数据来对决策表中的噪声进行过滤,最后再由粗糙集值约简算法进行规则提取。实验表明,该方法相对于传统规则提取算法快速有效,在保留神经网络高鲁棒性的同时,避免了从神经网络中提取规则的困难。