Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (18): 36-38.
• 理论研究 • Previous Articles Next Articles
XIAN Guang-ming
Received:
Revised:
Online:
Published:
Contact:
冼广铭
通讯作者:
Abstract: The used SVM kernel function can not approach to any object function in regression.Aiming at the problem,the construction model of Least Square Wavelet Support Vector Machine(LS-WSVM) is proposed based on conditions of the support vector kernel function and wavelet frame theory.Compared with standard SVM and LS-SVM under the same conditions,experimental results show that LS-WSVM has more excellent performance of feature abstraction in regression and its fitting result is more accurate.
摘要: 针对目前使用的SVM核函数在回归中不能逼近任意目标函数的问题,在支持向量机的核方法和小波框架理论的基础上,提出了LS-WSVM结构模型。该模型在LS-SVM中使用一种新的由小波构成的SVM核函数。实验结果表明,与标准的SVM及LS-SVM比较起来,在同等条件下,LS-WSVM在函数回归方面LS-WSVM具有优良的逼近性能,拟合效果更为细腻。
XIAN Guang-ming. Data fitting experiments of LS-WSVM[J]. Computer Engineering and Applications, 2008, 44(18): 36-38.
冼广铭. 基于最小二乘小波支持向量机的数据拟合实验[J]. 计算机工程与应用, 2008, 44(18): 36-38.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2008/V44/I18/36