Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (1): 138-141.
• 网络、通信与安全 • Previous Articles Next Articles
YANG Bin,LIU Wei-guo
Received:
Revised:
Online:
Published:
Contact:
杨 斌,刘卫国
通讯作者:
Abstract: Unsupervised anomaly detection can’t detect a massive attack in bursts.In order to solve this problem,this paper proposes a unsupervised anomaly detection model based on clustering.It chooses clustering result from multi-clusters which has the minimum DB index,applies minimum intra-cluster distance and maximum intra-cluster distance to classify every cluster,then identifies attacks.Experimental results show that the proposed strategy can improve obviously detection rate and decrease false positive rate.
Key words: unsupervised anomaly detection, K-means algorithm, Davies-Bouldin index, intra-cluster distance
摘要: 为了解决无监督异常检测方法无法检测突发性的大规模攻击的问题,提出了一种基于聚类的无监督异常检测模型,该模型从多个聚类器中选取DB指数最小的分簇结果,并利用最小簇内距离、最大簇内距离对每个簇进行分类,从而识别出攻击。实验表明该模型明显提高了检测率、降低了误报率。
关键词: 无监督异常检测, K均值算法, DB指数, 簇内距离
YANG Bin,LIU Wei-guo. Clustering-based unsupervised anomaly detection method[J]. Computer Engineering and Applications, 2008, 44(1): 138-141.
杨 斌,刘卫国. 一种基于聚类的无监督异常检测方法[J]. 计算机工程与应用, 2008, 44(1): 138-141.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2008/V44/I1/138