Computer Engineering and Applications ›› 2007, Vol. 43 ›› Issue (18): 65-68.

• 学术探讨 • Previous Articles     Next Articles

Robust maximum likelihood feed forward neural network and its application study

DONG Zhan-hua,WANG Shi-tong,FENG Jian-hua   

  1. School of Information Technology,Southern Yangtze University,Wuxi,Jiangsu 214122,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-06-21 Published:2007-06-21
  • Contact: DONG Zhan-hua

鲁棒性的极大似然前馈神经网络及其应用研究

董占华,王士同,冯建华   

  1. 江南大学 信息工程学院,江苏 无锡 214122
  • 通讯作者: 董占华

Abstract: In this paper,a novel robust BP neural network based on the maximum likelihood method is presented.The error function of the proposed algorithm is constructed with the maximum likelihood method.Compared with the classical BP algorithm,the new robust BP algorithm not only considers the influence of noise to network learning but also may learn the system parameters from the global viewpoint,so the robustness of the proposed algorithm can be enhanced.The experimental results demonstrate the feasibility and the superiority of our approach here.

摘要: 提出了一种新的基于极大似然法的BP神经网络算法,该算法定义了一种新的误差函数。与传统BP算法相比,其优点在于不仅考虑了噪声对网络学习的影响,而且能够从全局的角度对网络参数进行学习,从而使网络的鲁棒性增强。实验结果说明了本方法的可行性与优越性。