
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (22): 55-74.DOI: 10.3778/j.issn.1002-8331.2503-0065
• Research Hotspots and Reviews • Previous Articles Next Articles
LI Jingdan, YU Junqi, FENG Chunyong, WANG Ben, WANG Kaiwen, WU Yonghua
Online:2025-11-15
Published:2025-11-14
李经丹,于军琪,冯春勇,王奔,王楷文,伍勇华
LI Jingdan, YU Junqi, FENG Chunyong, WANG Ben, WANG Kaiwen, WU Yonghua. Review of 3D LiDAR SLAM Research for Embodied Intelligent Robots in Dynamic Environments[J]. Computer Engineering and Applications, 2025, 61(22): 55-74.
李经丹, 于军琪, 冯春勇, 王奔, 王楷文, 伍勇华. 动态环境中具身智能机器人三维激光SLAM研究综述[J]. 计算机工程与应用, 2025, 61(22): 55-74.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2503-0065
| [1] 邵宏, 谢大雄. 具身智能机器人技术[J]. 中兴通讯技术, 2024, 30(S1): 40-44. SHAO H, XIE D X. Embodied intelligent robotics[J]. ZTE Technology Journal, 2024, 30(S1): 40-44. [2] 张伟男, 刘挺. 具身智能的研究与应用[J]. 智能系统学报, 2025, 20(1): 255-262. ZHANG W N, LIU T. Research and application of embodied intelligence[J]. CAAI Transactions on Intelligent Systems, 2025, 20(1): 255-262. [3] 兰沣卜, 赵文博, 朱凯, 等. 基于具身智能的移动操作机器人系统发展研究[J]. 中国工程科学, 2024, 26(1): 139-148. LAN F B, ZHAO W B, ZHU K, et al. Development of mobile manipulator robot system with embodied intelligence[J]. Strategic Study of CAE, 2024, 26(1): 139-148. [4] XU W, CAI Y X, HE D J, et al. FAST-LIO2: fast direct LiDAR-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38(4): 2053-2073. [5] CHEN Z M, FANG H Z, CHEN J P, et al. MOE: a dense LiDAR moving event dataset, detection benchmark and Leader- Board[C]//Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2024: 12310-12317. [6] 诸葛晶昌, 高宏, 罗其俊, 等. 激光雷达IMU紧耦合SLAM算法研究[J]. 仪器仪表学报, 2024, 45(11): 243-251. ZHUGE J C, GAO H, LUO Q J, et al. Research on tightly coupled SLAM algorithm for LiDAR IMU[J]. Chinese Journal of Scientific Instrument, 2024, 45(11): 243-251. [7] LI L N, YUAN J, SUN H, et al. An SLAM algorithm based on laser radar and vision fusion with loop detection optimiz-ation[J]. Journal of Physics: Conference Series, 2022, 2203(1): 012029. [8] 陈丹, 吴欣. 移动机器人改进激光SLAM算法研究[J]. 计算机工程与应用, 2022, 58(4): 163-168. CHEN D, WU X. Research on improved laser SLAM algorithm for mobile robots[J]. Computer Engineering and Applications, 2022, 58(4): 163-168. [9] QIN T, LI P L, SHEN S J. VINS-mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. [10] YANG L, CAI H B. Enhanced visual SLAM for construction robots by efficient integration of dynamic object segmentation and scene semantics[J]. Advanced Engineering Informatics, 2024, 59: 102313. [11] CHEN X, ZHANG H, LU H M, et al. Robust SLAM system based on monocular vision and LiDAR for robotic urban search and rescue[C]//Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics. Piscataway: IEEE, 2017: 41-47. [12] 李庆玲, 郭鸿锐, 蔡轩, 等. 一种激光三维点云动态障碍剔除算法框架[J]. 实验技术与管理, 2023, 40(7): 56-62. LI Q L, GUO H R, CAI X, et al. A framework on dynamic obstacle removal algorithm of laser 3D point cloud[J]. Experimental Technology and Management, 2023, 40(7): 56-62. [13] JU L Y, ZHAO H, JI X C, et al. IBLI-SLAM: intensity-based LiDAR-inertial SLAM for dynamic environments[C]//Proceedings of the 2024 14th International Conference on Indoor Positioning and Indoor Navigation. Piscataway: IEEE, 2024: 1-7. [14] JIN X F, GE J F, XIAO J J, et al. FADOR: fast and accurate dynamic object removal for indoor scenes[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8505710. [15] GHARINEIAT Z, TARSHA KURDI F, CAMPBELL G. Rev-iew of automatic processing of topography and surface feature identification LiDAR data using machine learning techniques[J]. Remote Sensing, 2022, 14(19): 4685. [16] MIRZAEI K, ARASHPOUR M, ASADI E, et al. 3D point cloud data processing with machine learning for construction and infrastructure applications: a comprehensive review[J]. Advanced Engineering Informatics, 2022, 51: 101501. [17] 严瀚宇, 孙博, 马天力, 等. 动态场景下融合深度信息的实时语义SLAM方法[J]. 传感器与微系统, 2025, 44(2): 139-142. YAN H Y, SUN B, MA T L, et al. Real-time semantic SLAM method fusing depth information in dynamic scenes[J]. Transducer and Microsystem Technologies, 2025, 44(2): 139-142. [18] PETROVSKAYA A, THRUN S. Model based vehicle detection and tracking for autonomous urban driving[J]. Autonomous Robots, 2009, 26(2): 123-139. [19] SHACKLETON J, VANVOORST B, HESCH J. Tracking people with a 360-degree LiDAR[C]//Proceedings of the 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE, 2010: 420-426. [20] LITOMISKY K, BHANU B. Removing moving objects from point cloud scenes[C]//Advances in Depth Image Analysis and Applications: WDIA 2012. Berlin, Heidelberg: Springer, 2013: 50-58. [21] 代领, 宋振波, 陆建峰. 用于SLAM的点云动态物体识别[J]. 计算机工程与应用, 2024, 60(20): 312-319. DAI L, SONG Z B, LU J F. Point cloud dynamic object recog- nition for SLAM[J]. Computer Engineering and Applications, 2024, 60(20): 312-319. [22] RUCHTI P, BURGARD W. Mapping with dynamic-object probabilities calculated from single 3D range scans[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 6331-6336. [23] LIU X Y, QI C R, GUIBAS L J. FlowNet3D: learning scene flow in 3D point clouds[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 529-537. [24] CORTINHAL T, TZELEPIS G, AKSOY E E. SalsaNext: fast, uncertainty-aware semantic segmentation of LiDAR point clouds[C]//Advances in Visual Computing: ISVC 2020. Cham: Springer, 2020: 207-222. [25] MILIOTO A, VIZZO I, BEHLEY J, et al. RangeNet++: fast and accurate LiDAR semantic segmentation[C]//Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2020: 4213-4220. [26] ZHOU H, ZHU X G, SONG X, et al. Cylinder3D: an effective 3D framework for driving-scene LiDAR semantic segmentation[J]. arXiv:2008.01550, 2020. [27] WANG W Q, YOU X, ZHANG X, et al. LiDAR-based SLAM under semantic constraints in dynamic environments[J]. Remote Sensing, 2021, 13(18): 3651. [28] KIM J, WOO J, IM S. RVMOS: range-view moving object segmentation leveraged by semantic and motion features[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 8044-8051. [29] MINEMURA K, LIAU H, MONRROY A, et al. LMNet: real-time multiclass object detection on CPU using 3D LiDAR[C]//Proceedings of the 2018 3rd Asia-Pacific Conference on Intelligent Robot Systems. Piscataway: IEEE, 2018: 28-34. [30] MERSCH B, CHEN X, VIZZO I, et al. Receding moving object segmentation in 3D LiDAR data using sparse 4D convolutions[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 7503-7510. [31] SUN J D, DAI Y C, ZHANG X J, et al. Efficient spatial-temporal information fusion for LiDAR-based 3D moving object segmentation[C]//Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2022: 11456-11463. [32] LI S J, CHEN X, LIU Y, et al. Multi-scale interaction for real-time LiDAR data segmentation on an embedded platform[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 738-745. [33] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. arXiv: 1706.02413, 2017. [34] HAN X F, CHENG H X, JIANG H, et al. PCB-RandNet: re-thinking random sampling for LiDAR semantic segmentation in autonomous driving scene[C]//Proceedings of the 2024 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2024: 4435-4441. [35] 刘丰宇, 程向红, 曹毅. 基于深度学习与特征点速度约束的室内动态SLAM方法[J]. 中国惯性技术学报, 2023, 31(5): 438-443. LIU F Y, CHENG X H, CAO Y. An indoor dynamic SLAM method based on deep learning and feature point velocity constraint[J]. Journal of Chinese Inertial Technology, 2023, 31(5): 438-443. [36] UNDERWOOD J P, GILLSJ? D, BAILEY T, et al. Explicit 3D change detection using ray-tracing in spherical coordinates[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2013: 4735-4741. [37] HORNUNG A, WURM K M, BENNEWITZ M, et al. OctoMap: an efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots, 2013, 34(3): 189-206. [38] CHEN C, YANG B S. Dynamic occlusion detection and inpainting of in situ captured terrestrial laser scanning point clouds sequence[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 90-107. [39] ASVADI A, PREMEBIDA C, PEIXOTO P, et al. 3D LiDAR-based static and moving obstacle detection in driving environments: an approach based on voxels and multi-region ground planes[J]. Robotics and Autonomous Systems, 2016, 83: 299-311. [40] SCHAUER J, NüCHTER A. Digitizing automotive production lines without interrupting assembly operations through an automatic voxel-based removal of moving objects[C]//Proceedings of the 2017 13th IEEE International Conference on Control & Automation. Piscataway: IEEE, 2017: 701-706. [41] SCHAUER J, NüCHTER A. The people remover: removing dynamic objects from 3-D point cloud data by traversing a voxel occupancy grid[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1679-1686. [42] PAGAD S, AGARWAL D, NARAYANAN S, et al. Robust method for removing dynamic objects from point clouds[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 10765-10771. [43] ARORA M, WIESMANN L, CHEN X, et al. Mapping the static parts of dynamic scenes from 3D LiDAR point clouds exploiting ground segmentation[C]//Proceedings of the 2021 European Conference on Mobile Robots. Piscataway: IEEE, 2021: 1-6. [44] 吕品, 过佳珺, 赖际舟, 等. 多光线追踪与高度特征约束的激光雷达动态点云检测方法[J]. 中国惯性技术学报, 2024, 32(10): 1010-1017. LYU P, GUO J J, LAI J Z, et al. LiDAR dynamic point cloud detection method with multi-ray tracing and high feature constraints[J]. Journal of Chinese Inertial Technology, 2024, 32(10): 1010-1017. [45] POMERLEAU F, KRüSI P, COLAS F, et al. Long-term 3D map maintenance in dynamic environments[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2014: 3712-3719. [46] YOON D, TANG T, BARFOOT T. Mapless online detection of dynamic objects in 3D lidar[C]//Proceedings of the 2019 16th Conference on Computer and Robot Vision. Piscataway: IEEE, 2019: 113-120. [47] TANG T Y, YOON D J, POMERLEAU F, et al. Learning a bias correction for LiDAR-only motion estimation[C]//Proceedings of the 2018 15th Conference on Computer and Robot Vision. Piscataway: IEEE, 2018: 166-173. [48] 鲍柏仲, 詹小斌, 喻蝶, 等. 基于雷达与相机融合的动态SLAM算法[J]. 仪表技术与传感器, 2024(7): 105-109. BAO B Z, ZHAN X B, YU D, et al. Dynamic SLAM algorithm based on LiDAR and camera fusion[J]. Instrument Technique and Sensor, 2024(7): 105-109. [49] KIM G, KIM A. Remove, then revert: static point cloud map construction using multiresolution range images[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2021: 10758-10765. [50] CHEN X, LI S J, MERSCH B, et al. Moving object segmenta-tion in 3D LiDAR data: a learning-based approach exploiting sequential data[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 6529-6536. [51] QIAN C L, XIANG Z H, WU Z R, et al. RF-LIO: removal-first tightly-coupled LiDAR inertial odometry in high dynamic environments[C]//Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2021: 4421-4428. [52] SHAN T X, ENGLOT B, MEYERS D, et al. LIO-SAM: tightly-coupled LiDAR inertial odometry via smoothing and mapping[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2021: 5135-5142. [53] JIA M K, ZHANG Q W, YANG B W, et al. BeautyMap: binary-encoded adaptable ground matrix for dynamic points removal in global maps[J]. IEEE Robotics and Automation Letters, 2024, 9(7): 6256-6263. [54] JIA Y P, CAO F K, WANG T, et al. CAD-mesher: a convenient, accurate, dense mesh-based mapping module in SLAM for dynamic environments[J]. arXiv:2408.05981, 2024. [55] SHAN T X, ENGLOT B, RATTI C, et al. LVI-SAM: tightly-coupled LiDAR-visual-inertial odometry via smoothing and mapping[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 5692-5698. [56] DU N, XIE L B, ZHOU M, et al. Convex hull triangle mesh-based static mapping in highly dynamic environments[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8500814. [57] 刘铭哲, 徐光辉, 唐堂, 等. 激光雷达SLAM算法综述[J]. 计算机工程与应用, 2024, 60(1): 1-14. LIU M Z, XU G H, TANG T, et al. Review of SLAM based on LiDAR[J]. Computer Engineering and Applications, 2024, 60(1): 1-14. [58] LI F Y, FU C Y, SUN D Y, et al. SD-SLAM: a semantic SLAM approach for dynamic scenes based on LiDAR point clouds[J]. Big Data Research, 2024, 36: 100463. [59] WEI C Y, WANG R L, WU T, et al. Plane-based scan registration with moving vehicles exclusion[J]. Robotics and Auto-nomous Systems, 2016, 83: 261-274. [60] HESS W, KOHLER D, RAPP H, et al. Real-time loop closure in 2D LiDAR SLAM[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2016: 1271-1278. [61] WANG Y K, YAO W R, ZHANG B, et al. DRR-LIO: a dynamic-region-removal-based LiDAR inertial odometry in dynamic environments[J]. IEEE Sensors Journal, 2023, 23(12): 13175-13185. [62] WU W Z, WANG W L. LiDAR inertial odometry based on indexed point and delayed removal strategy in highly dynamic environments[J]. Sensors, 2023, 23(11): 5188. [63] YUAN Z, WANG X, WU J, et al. A fast dynamic point dete-ction method for LiDAR-inertial odometry in driving scenarios[J]. arXiv:2407.03590, 2024. [64] DUBERG D, ZHANG Q W, JIA M K, et al. DUFOMap: efficient dynamic awareness mapping[J]. IEEE Robotics and Auto-mation Letters, 2024, 9(6): 5038-5045. [65] PFREUNDSCHUH P, HENDRIKX H F C, REIJGWART V, et al. Dynamic object aware LiDAR SLAM based on automatic generation of training data[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 11641-11647. [66] JIA Y P, WANG T, CAO F K, et al. TRLO: an efficient LiDAR odometry with 3-D dynamic object tracking and removal[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 8507810. [67] LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12689-12697. [68] YIN T W, ZHOU X Y, KR?HENBüHL P. Center-based 3D object detection and tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-nition. Piscataway: IEEE, 2021: 11779-11788. [69] KIM G, CHOI S, KIM A. Scan context: structural place recog-nition robust to rotation and lateral variations in urban env-ironments[J]. IEEE Transactions on Robotics, 2022, 38(3): 1856-1874. [70] WU R G, FANG Z, PANG C L, et al. OTD: an online dynamic traces removal method based on observation time difference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5631613. [71] CHEN X, MILIOTO A, PALAZZOLO E, et al. SuMa++: eff-icient LiDAR-based semantic SLAM[C]//Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2020: 4530-4537. [72] FAN T X, SHEN B W, CHEN H, et al. DynamicFilter: an online dynamic objects removal framework for highly dynamic environments[C]//Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE, 2022: 7988-7994. [73] YAN Z H, WU X Y, JIAN Z Z, et al. RH-map: online map construction framework of dynamic object removal based on 3D region-wise hash map structure[J]. IEEE Robotics and Automation Letters, 2024, 9(2): 1492-1499. [74] LIM H, HWANG S, MYUNG H. ERASOR: egocentric ratio of pseudo occupancy-based dynamic object removal for static 3D point cloud map building[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2272-2279. [75] LIM H, NUNES L, MERSCH B, et al. ERASOR2: instance-aware robust 3D mapping of the static world in dynamic scenes[C]//Robotics: Science and Systems XIX, 2023. [76] ARORA M, WIESMANN L, CHEN X, et al. Static map generation from 3D LiDAR point clouds exploiting ground segmentation[J]. Robotics and Autonomous Systems, 2023, 159: 104287. [77] CHEN Z M, ZHANG K, CHEN H, et al. DORF: a dynamic object removal framework for robust static LiDAR mapping in urban environments[J]. IEEE Robotics and Auto-mation Letters, 2023, 8(12): 7922-7929. [78] SUN L, YAN Z, ZAGANIDIS A, et al. Recurrent-OctoMap: learning state-based map refinement for long-term semantic mapping with 3-D-Lidar data[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3749-3756. [79] WALCOTT-BRYANT A, KAESS M, JOHANNSSON H, et al. Dynamic pose graph SLAM: long-term mapping in low dynamic environments[C]//Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2012: 1871-1878. [80] 高旺, 赵恒, 刘宏, 等. 基于隐式神经地图的LiDAR/IMU匹配定位算法[J]. 仪器仪表学报, 2024, 45(12): 74-84. GAO W, ZHAO H, LIU H, et al. LiDAR/IMU matching loc-alization algorithm based on implicit neural map[J]. Chinese Journal of Scientific Instrument, 2024, 45(12): 74-84. [81] EINHORN E, GROSS H M. Generic 2D/3D SLAM with NDT maps for lifelong application[C]//Proceedings of the 2013 European Conference on Mobile Robots. Piscataway: IEEE, 2014: 240-247. [82] KRAJNíK T, FENTANES J P, SANTOS J M, et al. FreMEn: frequency map enhancement for long-term mobile robot autonomy in changing environments[J]. IEEE Transactions on Robotics, 2017, 33(4): 964-977. [83] EGGER P, BORGES P V K, CATT G, et al. PoseMap: lifelong, multi-environment 3D LiDAR localization[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2019: 3430-3437. [84] ZHAO M, GUO X, SONG L, et al. A general framework for lifelong localization and mapping in changing environment[C]//Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2021: 3305-3312. [85] KIM G, KIM A. LT-mapper: a modular framework for LiDAR-based lifelong mapping[C]//Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE, 2022: 7995-8002. [86] CHEN B S, ZHONG X Y, XIE H, et al. SLAM-RAMU: 3D LiDAR-IMU lifelong SLAM with relocalization and auto-nomous map updating for accurate and reliable navigation[J]. Industrial Robot: The International Journal of Robotics Research and Application, 2024, 51(2): 219-235. [87] YANG L D, PRAKHYA S M, ZHU S H, et al. Lifelong 3D mapping framework for hand-held & robot-mounted LiDAR mapping systems[J]. IEEE Robotics and Automation Letters, 2024, 9(11): 9446-9453. [88] GEIGER A, LENZ P, URTASUN R. Are we ready for auto-nomous driving? The KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 3354-3361. [89] CARLEVARIS-BIANCO N, USHANI A K, EUSTICE R M. University of Michigan North Campus long-term vision and lidar dataset[J]. The International Journal of Robotics Research, 2016, 35(9): 1023-1035. [90] BEHLEY J, GARBADE M, MILIOTO A, et al. Semantic- KITTI: a dataset for semantic scene understanding of LiDAR sequences[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2020: 9296-9306. [91] SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2443-2451. [92] WEN W S, ZHOU Y Y, ZHANG G H, et al. UrbanLoco: a full sensor suite dataset for mapping and localization in urban scenes[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 2310-2316. [93] SCHMID L, ANDERSSON O, SULSER A, et al. Dynablox: real-time detection of diverse dynamic objects in complex environments[J]. IEEE Robotics and Automation Letters, 2023, 8(10): 6259-6266. [94] LIN Y X, MA J X, GU S Z, et al. Collecting larg-scale robotic datasets on a high-speed mobile platform[J]. arXiv:2408. 00545, 2024. |
| [1] | GUO Ruiqi, XIU Rui, SUN Yong, MAO Zhe. Improved Tightly-Coupled Visual-Inertial SLAM Algorithm for Dynamic Environment [J]. Computer Engineering and Applications, 2025, 61(4): 339-348. |
| [2] | WANG Yudong, WU Helei, XU Xuesong. Real-Time Dynamic Visual-Inertial SLAM Algorithm Integrated with Gaussian Mixture Filtering [J]. Computer Engineering and Applications, 2025, 61(23): 329-339. |
| [3] | YANG Hailan, QI Yongqiang, RONG Dan. AGV Path Planning Based on Memristor Reinforcement Learning in Warehouse Environment [J]. Computer Engineering and Applications, 2023, 59(17): 318-327. |
| [4] | HU Xiaobing, MENG Xiangzhi. Many-to-Many Path Planning Method for Material Distribution Under Dynamic Disaster Environment [J]. Computer Engineering and Applications, 2022, 58(8): 297-306. |
| [5] | WANG Qingshan, ZHANG Jun, LIU Yuansheng, ZHANG Xinchen. Point Cloud Registration Algorithm Based on Combination of NDT and ICP [J]. Computer Engineering and Applications, 2020, 56(7): 88-95. |
| [6] | SUN Yonghe1, DUAN Wanchun1, LI Chunhao2, XU Chenglei1. Multi-criteria group decision making approach with variable weights in dynamic environment [J]. Computer Engineering and Applications, 2015, 51(2): 1-6. |
| [7] | LV Zhanyong, CAO Jiangtao. Robot path planning method based on biologically incentives neural network with self-feedback [J]. Computer Engineering and Applications, 2014, 50(16): 255-258. |
| [8] | SHI Zhao1,2, FU Zhuo1. Distribution vehicle routing problem of whole set orders based on JIT mode in dynamic environment [J]. Computer Engineering and Applications, 2012, 48(32): 23-29. |
| [9] | QIAN Shuqu,WU Huihong. Dynamic immune algorithm based on simulated annealing selection and its application [J]. Computer Engineering and Applications, 2011, 47(36): 57-60. |
| [10] | FENG Lin,JIA Jinghui. Improved algorithm of RRT path planning based on comparison optimization [J]. Computer Engineering and Applications, 2011, 47(3): 210-213. |
| [11] | WU Yunpeng,HUANG Jincai,ZHANG Weiming,LIU Zhong,ZHU Cheng,XIU Baoxin. Planning modeling and state reasoning in competitive situation [J]. Computer Engineering and Applications, 2011, 47(26): 1-3. |
| [12] | ZHAO Yan-jie,TANG Pu-ying. Multiuser detection in dynamic environment based on particle swarm optimization algorithm [J]. Computer Engineering and Applications, 2010, 46(8): 141-143. |
| [13] | WANG Lu1,ZHANG Dao-guang1,CAI Zi-xing2. Dynamical scene recognition method combined with visual salient features and filtering moving objects [J]. Computer Engineering and Applications, 2010, 46(26): 152-154. |
| [14] | YOU Wei,LI Mei-yi,WU Qiong,HU Jian. Method of path-finding for mobile robot in unknown dynamic environment [J]. Computer Engineering and Applications, 2009, 45(19): 201-203. |
| [15] | LI Xiao-yuan,LI Mei-yi,SONG Ling. Improved niche Particle Swarm Optimizer in dynamic environment [J]. Computer Engineering and Applications, 2008, 44(9): 51-54. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||