[1] BARODI A, BAJIT A, ZEMMOURI A, et al. Improved deep learning performance for real-time traffic sign detection and recognition applicable to intelligent transportation systems[J]. International Journal of Advanced Computer Science and Applications, 2022, 13(5): 712-723.
[2] 陈飞, 刘云鹏, 李思远. 复杂环境下的交通标志检测与识别方法综述[J]. 计算机工程与应用, 2021, 57(16): 65-73.
CHEN F, LIU Y P, LI S Y. Survey of traffic sign detection and recognition methods in complex environment[J]. Computer Engineering and Applications, 2021, 57(16): 65-73.
[3] 赵磊, 李栋. PMM-YOLO: 多尺度特征融合的交通标志检测算法[J]. 计算机工程与应用, 2025, 61(4): 262-271.
ZHAO L, LI D. PMM-YOLO: traffic sign detection algorithm with multi-scale feature fusion[J]. Computer Engineering and Applications, 2025, 61(4): 262-271.
[4] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single hot multiBox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[6] ZHAO Y A, LYU W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[8] 刘思元, 高凯, 雍龙泉. 改进RT-DETR的航拍小目标检测算法[J]. 计算机工程与应用, 2025, 61(4): 272-281.
LIU S Y, GAO K, YONG L Q. Improved RT-DETR algorithm for aerial small object detection[J]. Computer Engineering and Applications, 2025, 61(4): 272-281.
[9] SONG X, FAN B, LIU H, et al. HPRT-DETR: a high-precision real-time object detection algorithm for intelligent driving vehicles[J]. Sensors (Basel), 2025, 25(6): 1778.
[10] MU J H, SU Q H, WANG X Y, et al. A small object detection architecture with concatenated detection heads and multi-head mixed self-attention mechanism[J]. Journal of Real-Time Image Processing, 2024, 21(6): 184.
[11] 朱硕, 梁吉丰, 孙佳豪, 等. 基于改进YOLOv5s的交通标志检测算法[J]. 无线电工程, 2024, 54(12): 2902-2912.
ZHU S, LIANG J F, SUN J H, et al. Traffic sign detection algorithm based on improved YOLOv5s [J]. Radio Engineering, 2024, 54(12): 2902-2912.
[12] 罗向龙, 吕温馨, 石镇岳, 等. 改进YOLOv8n的轻量化交通标志检测算法[J]. 激光与光电子学进展, 2025, 62(12): 422-433.
LUO X L, LYU W X, SHI Z Y, et al. Improved lightweight traffic sign detection algorithm for YOLOv8n[J]. Laser & Optoelectronics Progress, 2025, 62(12): 422-433.
[13] HAN Y J, WANG F P, WANG W, et al. YOLO-SG: small traffic signs detection method in complex scene[J]. The Journal of Supercomputing, 2024, 80(2): 2025-2046.
[14] WANG A, CHEN H, LIU L H, et al. YOLOv10: realtime end-to-end object detection[J]. arXiv:2405.14458, 2024.
[15] HU S, GAO F, ZHOU X W, et al. Hybrid convolutional and attention network for hyperspectral image denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1-5.
[16] OPLE J J M, YEH P Y, SUN S W, et al. Multi-scale neural network with dilated convolutions for image deblurring[J]. IEEE Access, 2020, 8: 53942-53952.
[17] JIAO J Y, TANG Y M, LIN K Y, et al. DilateFormer: multi-scale dilated transformer for visual recognition[J]. IEEE Transactions on Multimedia, 2023, 25: 8906-8919.
[18] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[19] ZHANG H, XU C, ZHANG S J. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv:2311.02877, 2023.
[20] MA S L, XU Y. MPDIoU: a loss for effcient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[21] ZHU Z, LIANG D, ZHANG S H, et al. Traffic-sign detection and classification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2110-2118.
[22] ZHANG J, ZOU X, KUANG L D, et al. CCTSDB 2021: a more comprehensive traffic sign detection benchmark[J]. Human-Centric Computing and Information Sciences, 2022, 12: 22967.
[23] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[24] LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[25] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv:2305.09972, 2023.
[26] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2025: 1-21.
[27] TIAN Y, YE Q, DOERMANN D. YOLOv12: attention-centric real-time object detectors[J]. arXiv:2502.12524, 2025.
[28] 秦伦明, 张云起, 崔昊杨, 等. 基于改进RT-DETR的极端天气下交通标志检测方法[J]. 电子测量技术, 2025, 48(9): 56-64.
QIN L M, ZHANG Y Q, CUI H Y, et al. Traffic sign detection method in extreme weather based on improved RT-DETR[J]. Electronic Measurement Technology, 2025, 48(9): 56-64.
[29] 高翊轩, 李昕, 刘婧彤. 改进YOLOv5的小目标交通标志检测方法[J]. 计算机工程与设计, 2024, 45(12): 3639-3647.
GAO Y X, LI X, LIU J T. Improved YOLOv5 small target traffic sign detection method[J]. Computer Engineering and Design, 2024, 45(12): 3639-3647. |