
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (21): 1-14.DOI: 10.3778/j.issn.1002-8331.2501-0014
• Research Hotspots and Reviews • Previous Articles Next Articles
LI Minshu, ZHOU Mohan, ZHI Ruicong
Online:2025-11-01
Published:2025-10-31
李旻姝,周莫涵,支瑞聪
LI Minshu, ZHOU Mohan, ZHI Ruicong. Research Review of UAV Recognition Based on Multi-Modal Fusion[J]. Computer Engineering and Applications, 2025, 61(21): 1-14.
李旻姝, 周莫涵, 支瑞聪. 基于多模态融合的无人机识别研究综述[J]. 计算机工程与应用, 2025, 61(21): 1-14.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2501-0014
| [1] SHAKHATREH H, SAWALMEH A H, AL-FUQAHA A, et al. Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges[J]. IEEE Access, 2019, 7: 48572-48634. [2] HUMPHREYS T. Statement on the security threat posed by unmanned aerial systems and possible countermeasures[R]. Washington, DC: Homeland Security Committee, US House, 2015. [3] 赵芬, 赵长春, 郭俊, 等. 视觉感知反无人机技术发展动态与趋势[J]. 国防科技, 2023, 44(5): 35-45. ZHAO F, ZHAO C C, GUO J, et al. Visual perception-based anti-drone technology: development dynamics and trends[J]. National Defense Technology, 2023, 44(5): 35-45. [4] 杨辉跃, 简钰洪, 涂亚庆, 等. 反无人机视觉检测与跟踪技术进展分析[J]. 国防科技, 2023, 44(3): 40-51. YANG H Y, JIAN Y H, TU Y Q, et al. Review of anti-UAV visual detection and tracking technologies[J]. National Defense Technology, 2023, 44(3): 40-51. [5] 那振宇, 程留洋, 孙鸿晨, 等. 基于深度学习的无人机检测和识别研究综述[J]. 信号处理, 2024, 40(4): 609-624. NA Z Y, CHENG L Y, SUN H C, et al. Survey on UAV detection and identification based on deep learning[J]. Journal of Signal Processing, 2024, 40(4): 609-624. [6] 杨德贵, 韩同欢, 胡亮, 等. 单帧红外弱小目标检测技术研究现状与展望[J]. 信号处理, 2024, 40(5): 887-906. YANG D G, HAN T H, HU L, et al. Research status and prospect of single frame infrared dim small target detection technology[J]. Journal of Signal Processing, 2024, 40(5): 887-906. [7] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 886-893. [8] G?K?E F, ü?OLUK G, ?AHIN E, et al. Vision-based detection and distance estimation of micro unmanned aerial vehicles[J]. Sensors, 2015, 15(9): 23805-23846. [9] BALAKIN M, DVORAK A, KURYLEV D. Real-time drone detection and recognition by acoustic fingerprint[C]//Proceedings of the 2021 5th Scientific School Dynamics of Complex Networks and Their Applications. Piscataway: IEEE, 2021: 44-45. [10] DE QUEVEDO á D, URZAIZ F I, MENOYO J G, et al. Remotely piloted aircraft detection with persistent radar[C]//Proceedings of the 2018 15th European Radar Conference. Piscataway: IEEE, 2018: 317-320. [11] SCIANCALEPORE S, IBRAHIM O A, OLIGERI G, et al. Detecting drones status via encrypted traffic analysis[C]//Proceedings of the ACM Workshop on Wireless Security and Machine Learning. New York: ACM, 2019: 67-72. [12] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [13] GIRSHICK R. Fast R-CNN: fast region-based convolutional networks for object detection[C]//Proceedings of the Internation Conference on Computer Vision. Piscataway: IEEE, 2015. [14] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [15] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. [16] TURKEY B ? E U, YAYLA R, ALBAYRAK E, et al. Vehicle detection from unmanned aerial images with deep mask R-CNN[J]. Computer Science Journal of Moldova, 2022, 30(2): 148-169. [17] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162. [18] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [19] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. [20] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. [21] FARHADI A, REDMON J. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [22] SAHIN O, OZER S. YOLODrone: improved YOLO architecture for object detection in drone images[C]//Proceedings of the 2021 44th International Conference on Telecommunications and Signal Processing. Piscataway: IEEE, 2021: 361-365. [23] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016). Cham: Springer, 2016: 21-37. [24] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. [25] BISIO I, HALEEM H, GARIBOTTO C, et al. Performance evaluation and analysis of drone?based vehicle detection techniques from deep learning perspective[J]. IEEE Internet of Things Journal, 2022, 9(13): 10920-10935. [26] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021. [27] VARGHESE R, M S. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems. Piscataway: IEEE, 2024: 1-6. [28] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancementss[J]. arXiv:2410.17725, 2024. [29] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [30] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014. [31] MEZEI J, MOLNáR A. Drone sound detection by correlation[C]//Proceedings of the 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics. Piscataway: IEEE, 2016: 509-518. [32] BERNARDINI A, MANGIATORDI F, PALLOTTI E, et al. Drone detection by acoustic signature identification[J]. Electronic Imaging, 2017, 29(10): 60-64. [33] PARK S, SHIN S, KIM Y, et al. Combination of radar and audio sensors for identification of rotor-type unmanned aerial vehicles (UAVs)[C]//Proceedings of the 2015 IEEE SENSORS. Piscataway: IEEE, 2016: 1-4. [34] KIM J, PARK C, AHN J, et al. Real-time UAV sound detection and analysis system[C]//Proceedings of the 2017 IEEE Sensors Applications Symposium. Piscataway: IEEE, 2017: 1-5. [35] JEON S, SHIN J W, LEE Y J, et al. Empirical study of drone sound detection in real-life environment with deep neural networks[C]//Proceedings of the 2017 25th European Signal Processing Conference. Piscataway: IEEE, 2017: 1858-1862. [36] BIN ABDUL QAYYUM A, NAIMUL HASSAN K M, ANIKA A, et al. DOANet: a deep dilated convolutional neural network approach for search and rescue with drone-embedded sound source localization[J]. EURASIP Journal on Audio, Speech, and Music Processing, 2020(1): 1-18. [37] WANG L, CAVALLARO A. Deep-learning-assisted sound source localization from a flying drone[J]. IEEE Sensors Journal, 2022, 22(21): 20828-20838. [38] 罗吉庆, 方虎生, 朱经纬, 等. 基于双耳表征梅尔频谱特征无人机音频识别[J]. 计算机仿真, 2024, 41(10): 32-38. LUO J Q, FANG H S, ZHU J W, et al. UAV audio recognition based on mel spectrum with binaural representation[J]. Computer Simulation, 2024, 41(10): 32-38. [39] EL HOUSSEINI A, TOUMI A, KHENCHAF A. Deep Learning for target recognition from SAR images[C]//Proceedings of the 2017 Seminar on Detection Systems Architectures and Technologies. Piscataway: IEEE, 2017: 1-5. [40] KIM B K, KANG H S, PARK S O. Drone classification using convolutional neural networks with merged Doppler images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 38-42. [41] WANG L, TANG J, LIAO Q M. A study on radar target detection based on deep neural networks[J]. IEEE Sensors Letters, 2019, 3(3): 7000504. [42] RAVAL D, HUNTER E, HUDSON S, et al. Convolutional neural networks for classification of drones using radars[J]. Drones, 2021, 5(4): 149. [43] DALE H, BAKER C, ANTONIOU M, et al. An initial investigation into using convolutional neural networks for classification of drones[C]//Proceedings of the 2020 IEEE International Radar Conference. Piscataway: IEEE, 2020: 618-623. [44] WANG C X, TIAN J M, CAO J W, et al. Deep learning-based UAV detection in pulse?Doppler radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12. [45] TIAN J M, WANG C X, CAO J W, et al. Fully convolutional network?based fast UAV detection in pulse Doppler radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-12. [46] GARCIA A J, LEE J M, KIM D S. Anti-drone system: a visual-based drone detection using neural networks[C]//Proceedings of the 2020 International Conference on Information and Communication Technology Convergence. Piscataway: IEEE, 2020: 559-561. [47] LI R, PENG Y, YANG Q Q. Fusion enhancement: UAV target detection based on multi-modal GAN[C]//Proceedings of the 2023 IEEE 7th Information Technology and Mechatronics Engineering Conference. Piscataway: IEEE, 2023: 1953-1957. [48] YAO B, SUN P, SHANG M S, et al. Small target detection based on multimodal remote sensing images[C]//Proceedings of the 2024 Second International Conference on Cyber-Energy Systems and Intelligent Energy. Piscataway: IEEE, 2024: 1-5. [49] 郭润泽, 孙备, 孙晓永, 等. 无人机弱光条件下多模态融合目标检测方法[J]. 仪器仪表学报, 2025, 46(1): 338-350. GUO R Z, SUN B, SUN X Y, et al. Multimodal fusion object detection method for UAVs under low light conditions[J]. Chinese Journal of Scientific Instrument, 2025, 46(1): 338-350. [50] XU S F, CHEN X, LI H W, et al. Airborne small target detection method based on multimodal and adaptive feature fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-15. [51] WANG G R, JIANG Q, JIN X, et al. RTM-UAVDet: a real-time multimodal UAV detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(1): 473-489. [52] YU J, XU T Y, ZHU X F, et al. Local point matching for collaborative image registration and RGBT anti-UAV tracking[C]//Proceedings of the Pattern Recognition and Computer Vision. New York: ACM, 2024: 418-432. [53] 韩自强, 岳明凯, 张骢, 等. 基于孪生网络的无人机目标多模态融合检测[J]. 红外技术, 2023, 45(7): 739-745. HAN Z Q, YUE M K, ZHANG C, et al. Multimodal fusion detection of UAV target based on Siamese network[J]. Infrared Technology, 2023, 45(7): 739-745. [54] LIU H, WEI Z Q, CHEN Y T, et al. Drone detection based on an audio-assisted camera array[C]//Proceedings of the 2017 IEEE Third International Conference on Multimedia Big Data. Piscataway: IEEE, 2017: 402-406. [55] CASABIANCA P, ZHANG Y. Acoustic-based UAV detection using late fusion of deep neural networks[J]. Drones, 2021, 5(3): 54. [56] BAVU é, PUJOL H, GARCIA A, et al. Deeplomatics: a deep-learning based multimodal approach for aerial drone detection and localization[C]//Proceedings of the QUIET DRONES Second International E-Symposium on UAV/UAS Noise, 2022. [57] SVANSTR?M F, ALONSO-FERNANDEZ F, ENGLUND C. Drone detection and tracking in real-time by fusion of different sensing modalities[J]. Drones, 2022, 6(11): 317. [58] YANG Y Z, YUAN S H, YANG J F, et al. AV-FDTI: audio-visual fusion for drone threat identification[J]. Journal of Automation and Intelligence, 2024, 3(3): 144-151. [59] ZHANG Z B, ZENG C, DHAMELIYA M, et al. Deep learning based multi-modal sensing for tracking and state extraction of small quadcopters[J]. arXiv:2012.04794, 2020. [60] HUANG C, PETRUNIN I, TSOURDOS A. Radar-camera fusion for ground-based perception of small UAV in urban air mobility[C]//Proceedings of the 2023 IEEE 10th International Workshop on Metrology for AeroSpace. Piscataway: IEEE, 2023: 395-400. [61] VITIELLO F, CAUSA F, OPROMOLLA R, et al. Assessing performance of radar and visual sensing techniques for ground-to-air surveillance in advanced air mobility[C]//Proceedings of the 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference. Piscataway: IEEE, 2023: 1-10. [62] VITIELLO F, CAUSA F, OPROMOLLA R, et al. Experimental analysis of Radar/Optical track-to-track fusion for non-cooperative Sense and Avoid[C]//Proceedings of the 2023 International Conference on Unmanned Aircraft Systems. Piscataway: IEEE, 2023: 445-462. [63] DENG T C, ZHOU Y, WU W H, et al. Multi-modal UAV detection, classification and tracking algorithm: technical report for CVPR 2024 UG2 challenge[J]. arXiv:2405.16464, 2024. [64] WANG X Y, WANG X S, ZHOU Z Q, et al. Fast detection and obstacle avoidance on UAVs using lightweight convolutional neural network based on the fusion of radar and camera[J]. Applied Intelligence, 2024, 54(22): 11510-11524. [65] MCCOY J, RAWAL A, RAWAT D B, et al. Ensemble deep learning for sustainable multimodal UAV classification[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 15425-15434. [66] SHEU B H, CHIU C C, LU W T, et al. Development of UAV tracing and coordinate detection method using a dual-axis rotary platform for an Anti-UAV system[J]. Applied Sciences, 2019, 9(13): 2583. [67] ZHANG F B, CUI M Y, ZHANG C R, et al. Research on precise identification and localization methods for static small targets based on multimodal data fusion[J]. Measurement, 2025, 239: 115336. [68] SHI W Q, ARABADJIS G, BISHOP B, et al. Detecting, tracking, and identifying airborne threats with netted sensor fence[J].InTech, 2011. DOI:10.5772/17666.60474208. [69] CHARVAT G L, FENN A J, PERRY B T. The MIT IAP radar course: build a small radar system capable of sensing range, Doppler, and synthetic aperture (SAR) imaging[C]//Proceedings of the 2012 IEEE Radar Conference. Piscataway: IEEE, 2012: 138-144. [70] HENGY S, LAURENZIS M, SCHERTZER S, et al. Multimodal UAV detection: study of various intrusion scenarios[J]. Electro-Optical Remote Sensing XI, 2017, 10434: 203-212. [71] LAURENZIS M, HENGY S, HAMMER M, et al. An adaptive sensing approach for the detection of small UAV: first investigation of static sensor network and moving sensor platform[J]. Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII, 2018, 10646: 197-205. [72] RODRIGUEZ-RAMOS A, RODRIGUEZ-VAZQUEZ J, SAMPEDRO C, et al. Adaptive inattentional framework for video object detection with reward-conditional training[J]. IEEE Access, 2020, 8: 124451-124466. [73] COLUCCIA A, FASCISTA A, SCHUMANN A, et al. Drone-vs?Bird detection challenge at IEEE AVSS2021[C]//Proceedings of the 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE, 2022: 1-8. [74] JIANG N, WANG K R, PENG X K, et al. Anti-UAV: a large multi-modal benchmark for UAV tracking[J]. arXiv:2101.08466, 2021. [75] SVANSTR?M F, ALONSO-FERNANDEZ F, ENGLUND C. A dataset for multi-sensor drone detection[J]. Data in Brief, 2021, 39: 107521. [76] WANG Y Q, CHU Z W, KU I, et al. A large-scale UAV Audio Dataset and audio?based UAV classification using CNN[C]//Proceedings of the 2022 Sixth IEEE International Conference on Robotic Computing. Piscataway: IEEE, 2023: 186-189. [77] ZHAO J, ZHANG J S, LI D D, et al. Vision-based Anti-UAV detection and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25323-25334. [78] HUANG B, LI J N, CHEN J J, et al. Anti-UAV410: a thermal infrared benchmark and customized scheme for tracking drones in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 2852-2865. [79] ZHANG J, NA X, XI R, et al. mmHawkeye: passive UAV detection with a COTS mmWave radar[C]//Proceedings of the 2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). Piscataway: IEEE, 2023: 267-275. [80] YUAN S, YANG Y, NGUYEN T H, et al. MMAUD: a comprehensive multi-modal anti-uav dataset for modern miniature drone threats[J]. arXiv:2402.03706, 2024. |
| [1] | JIANG Wangyu, WANG Le, YAO Yepeng, MAO Guojun. Multi-Scale Feature Aggregation Diffusion and Edge Information Enhancement Small Object Detection Algorithm [J]. Computer Engineering and Applications, 2025, 61(7): 105-116. |
| [2] | LIU Siyuan, GAO Kai, YONG Longquan. Improved RT-DETR Algorithm for Aerial Small Object Detection [J]. Computer Engineering and Applications, 2025, 61(4): 272-281. |
| [3] | ZHANG Kai, JIA Tao. RCNN Method of Transmission Tower Component Detection Based on Knowledge Graph and Small Object Improvement [J]. Computer Engineering and Applications, 2025, 61(4): 299-309. |
| [4] | DONG Yibing, ZENG Hui, HOU Shaojie. LMUAV-YOLOv8: Lightweight Network for Object Detection in Low-Altitude UAV Vision [J]. Computer Engineering and Applications, 2025, 61(3): 94-110. |
| [5] | ZHANG Dawei, WANG Xuan, HE Xiaowei, ZHENG Zhonglong. Research Progress of RGBT Object Tracking Based on Deep Learning [J]. Computer Engineering and Applications, 2025, 61(19): 43-59. |
| [6] | ZHAO Qinghui, LAI Yaoping, GUAN Jingchao, ZENG Yanfen, CHAO Jianshu. Pixel Rearrangement and Feature Rearrangement Algorithms for Small Object Detection [J]. Computer Engineering and Applications, 2025, 61(17): 317-328. |
| [7] | WANG Quan, YE Guangfei, CHEN Qidong. YOLO-SWR: Lightweight Traffic Vehicle Detection Algorithm from UAV Perspective [J]. Computer Engineering and Applications, 2025, 61(14): 112-122. |
| [8] | YU Longkun, WANG Zihao, SHEN Hong, ZHAN Qiangbo. Fusion of Translation Dependency and Dual-Dimensional Small Object Detection Network [J]. Computer Engineering and Applications, 2025, 61(13): 300-308. |
| [9] | GUO Xinru, SONG Lijuan, ZHU Wenqian, DU Fang, MA Zirui. Review of Low-Shot Industrial Image Anomaly Detection [J]. Computer Engineering and Applications, 2025, 61(13): 26-45. |
| [10] | XIONG Gan, CHEN Cifa, ZHANG Shang. QMDF-YOLO11: Rice Pests Detection Algorithm in Complex Scenarios [J]. Computer Engineering and Applications, 2025, 61(13): 113-123. |
| [11] | TU Yuzhi, WANG Faxiang, WU Chunlin. Lightweight UAV Aerial Small Object Detection Model Integrating Multi-Attention Mechanisms [J]. Computer Engineering and Applications, 2025, 61(11): 93-104. |
| [12] | ZHOU Xinying, LI Leixiao, LIN Hao, ZHANG Hucheng. Review of Multi-Modal Driver Emotion Recognition [J]. Computer Engineering and Applications, 2025, 61(10): 1-18. |
| [13] | FENG Tailai, ZHANG Xuesong, SONG Cunli, LI Guangyu, JIN Hua. Improved Small Object Detection Method of YOLOv7 [J]. Computer Engineering and Applications, 2025, 61(10): 203-213. |
| [14] | PAN Wei, WEI Chao, QIAN Chunyu, YANG Zhe. Improved YOLOv8s Model for Small Object Detection from Perspective of Drones [J]. Computer Engineering and Applications, 2024, 60(9): 142-150. |
| [15] | LI Zhonghua, LIN Chujun, ZHU Hengliang, LIAO Shiyu, BAI Yunqi. Small Object Detection Based on Structure Perception and Global Context Information [J]. Computer Engineering and Applications, 2024, 60(9): 292-298. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||