[1] LIU J, ZHAO Z Y, LV C S, et al. An image enhancement algorithm to improve road tunnel crack transfer detection[J]. Construction and Building Materials, 2022, 348: 128583.
[2] 李婕, 李焕文, 涂静敏, 等. 基于双分支融合与多尺度语义增强的裂缝检测[J/OL]. 计算机工程与应用, 2025: 1-13(2025-01-06)[2025-01-20]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG20250103001&dbname=CJFD&
dbcode=CJFQ.
LI J, LI H W, TU J M, et al. Crack detection based on dual branch fusion and multi-scale semantic enhancement[J/OL]. Computer Engineering and Applications, 2025: 1-13(2025-01-06)[2025-01-20]. https://kns.cnki.net/KCMS/detail/detail.aspx?
filename=JSGG20250103001&dbname=CJFD&dbcode=CJFQ.
[3] BELL A, MANTECóN T, DíAZ C, et al. A novel system for nighttime vehicle detection based on foveal classifiers with real-time performance[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5421-5433.
[4] 胡成雪, 何莉, 陶健, 等. 邻域与梯度显著特征融合的沥青路面裂缝检测方法[J]. 计算机辅助设计与图形学学报, 2022, 34(2): 245-253.
HU C X, HE L, TAO J, et al. Asphalt pavement crack detection based on fusion of neighborhood and gradient salient features[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(2): 245-253.
[5] 董红月, 张兴忠, 赵杰伦. 基于可逆金字塔和平衡注意力的工业裂缝分割[J]. 计算机工程与应用, 2022, 58(12): 234-242.
DONG H Y, ZHANG X Z, ZHAO J L. Reversible pyramid and balanced attention network for industrial crack segmentation[J]. Computer Engineering and Applications, 2022, 58(12): 234-242.
[6] KADDAH W, ELBOUZ M, OUERHANI Y, et al. Optimized minimal path selection (OMPS) method for automatic and unsupervised crack segmentation within two-dimensional pavement images[J]. The Visual Computer, 2019, 35(9): 1293-1309.
[7] SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445.
[8] AI D H, JIANG G Y, KEI L S, et al. Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods[J]. IEEE Access, 2018, 6: 24452-24463.
[9] REZAIE A, ACHANTA R, GODIO M, et al. Comparison of crack segmentation using digital image correlation measurements and deep learning[J]. Construction and Building Materials, 2020, 261: 120474.
[10] REN Y P, HUANG J S, HONG Z Y, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234: 117367.
[11] MAO Z J, ZHAO C H, ZHENG Y F, et al. Research on detection method of pavement diseases based on Unmanned Aerial Vehicle (UAV)[C]//Proceedings of the 2020 International Conference on Image, Video Processing and Artificial Intelligence, 2020: 63.
[12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the International Conference on Learning Representations, 2015.
[13] OPARA J N. Defect detection on asphalt pavement by deeplearning[J]. International Journal of GEOMATE, 2021, 21(83): 87.
[14] SONG L, WANG X C. Faster region convolutional neural network for automated pavement distress detection[J]. Road Materials and Pavement Design, 2021, 22(1): 23-41.
[15] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[16] TRAN V P, TRAN T S, LEE H J, et al. One stage detector (RetinaNet)-based crack detection for asphalt pavements considering pavement distresses and surface objects[J]. Journal of Civil Structural Health Monitoring, 2021, 11(1): 205-222.
[17] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[18] SARMIENTO J A. Pavement distress detection and segmentation using YOLOv4 and DeepLabv3 on pavements in the Philippines[J]. arXiv:2103.06467, 2021.
[19] BOCHKOVSKIY A, WANG C Y, LIAO H Y. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[20] 王启涵, 刘超. 改进YOLOv7-Tiny的道路裂缝检测算法[J]. 计算机工程与应用, 2025, 61(10): 372-380.
WANG Q H, LIU C. Improved YOLOv7-tiny road crack detection algorithm[J]. Computer Engineering and Applications, 2025, 61(10): 372-380.
[21] ARYA D, MAEDA H, GHOSH S K, et al. Deep learning-based road damage detection and classification for multiple countries[J]. Automation in Construction, 2021, 132: 103935.
[22] WANG A, CHEN H, LIU L H, et al. YOLOv10: Real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[23] RAO Y M, ZHAO W L, TANG Y S, et al. HorNet:efficient high-order spatial interactions with recursive gated convolutions[C]//Proceedings of the 2022 International Conference on Neural Information Processing Systems, 2022: 10353-10366.
[24] YU T, LI X, CAI Y F, et al. S2-MLPv2: improved spatial- shift MLP architecture for vision[J]. arXiv:2108.01072, 2021.
[25] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[26] JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/yolov5: v5.0-YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations[J]. Zenodo, 2021.
[27] WAN F, SUN C, HE H Y, et al. YOLO-LRDD: a lightweight method for road damage detection based on improved YOLOv5s[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022(1): 98.
[28] HUANG Z P, CHEN X, LIU H H, et al. Pavement diseases detection using improved YOLOv5[C]//Proceedings of the 2023 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE, 2023: 1786-1791.
[29] LI M J, WANG H, PENG Y H, et al. Edge-to-client real-time road damage detection system based on YOLOv5[C]//Proceedings of the 2021 China Automation Congress. Piscataway: IEEE, 2021: 1221-1226.
[30] CHEN Z H, WANG D H, WANG Y Z, et al. Research and implementation of road damage detection algorithm based on object detection network[C]//Proceedings of the 2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology. Piscataway: IEEE, 2023: 446-450.
[31] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[32] TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
[33] 耿焕同, 刘振宇, 蒋骏, 等. 基于改进YOLOv8的嵌入式道路裂缝检测算法[J]. 计算机应用, 2024, 44(5): 1613-1618.
GENG H T, LIU Z Y, JIANG J, et al. Embedded road crack detection algorithm based on improved YOLOv8[J]. Journal of Computer Applications, 2024, 44(5): 1613-1618.
[34] 任安虎, 姜子渊, 马晨浩. 基于改进YOLOv5s的道路裂缝检测算法[J]. 激光杂志, 2024, 45(4): 88-94.
REN A H, JIANG Z Y, MA C H. Road crack detection algorithm based on improved YOLOv5s[J]. Laser Journal, 2024, 45(4): 88-94.
[35] CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 839-847. |