[1] 郭北涛, 张颢严. 基于改进YOLOv5的铝型材表面缺陷检测算法[J]. 机械工程师, 2024(6): 22-26.
GUO B T, ZHANG H Y. Surface defect detection algorithm of aluminum profile based on improved YOLOv5[J]. Mechanical Engineer, 2024(6): 22-26.
[2] 钱青霞,姜媛媛.改进YOLOV4-tiny的印刷电路板缺陷检测[J/OL]. 重庆工商大学学报 (自然科学版) [2024-10-28]. http://kns.cnki.net/kcms/dtail/50.1155.n.20240619.1254.002.html.
QIAN Q X, JIANG Y Y. Improving YOLOV4 tiny for defect detection in printed circuit boards[J/OL]. Journal of Chongqing Technology and Business University (Natural Science Edition) [2024-10-28]. http://kns.cnki.net/kcms/dtail/50.1155.n.20240619.1254.002.html.
[3] 唐茂俊, 黄海松, 张松松, 等. 改进的Faster-RCNN在焊缝缺陷检测中的应用[J]. 组合机床与自动化加工技术, 2021(12): 83-86.
TANG M J, HUANG H S, ZHANG S S, et al. Application of improved Faster-RCNN in weld defect detection[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(12): 83-86.
[4] 吴磊, 储钰昆, 杨洪刚, 等. 面向铝合金焊缝DR图像缺陷的Sim-YOLOv8目标检测模型[J]. 中国激光, 2024, 51(16): 1602103.
WU L, CHU Y K, YANG H G, et al. Sim-YOLOv8 object detection model for DR image defects in aluminum alloy welds[J]. Chinese Journal of Lasers, 2024, 51(16): 1602103.
[5] YANG D M, CUI Y R, YU Z Y, et al. Deep learning based steel pipe weld defect detection[J]. Applied Artificial Intelligence, 2021, 35(15): 1237-1249.
[6] HE Y H, LIN J, LIU Z J, et al. AMC: AutoML for model compression and acceleration on mobile devices[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 815-832.
[7] LI H L, LI J, WEI H B, et al. Slim-Neck by GSConv: a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing, 2024, 21(3): 62.
[8] MIN Y Z, GUO J C, YANG K. Research on real-time detection algorithm of rail-surface defects based on improved YOLOX[J]. Journal of Applied Science and Engineering, 2022, 26(6): 801-812.
[9] 赵泽民. 基于改进YOLOv6的轧钢表面细小缺陷检测研究与应用[D]. 太原: 中北大学, 2023.
ZHAO Z M. Research and application of small defects detection on steel rolling surface based on improved YOLOv6[D]. Taiyuan: North University of China, 2023.
[10] 高春艳, 秦燊, 李满宏, 等. 改进YOLOv7算法的钢材表面缺陷检测研究[J]. 计算机工程与应用, 2024, 60(7): 282-291.
GAO C Y, QIN S, LI M H, et al. Research on steel surface defect detection with improved YOLOv7 algorithm[J]. Computer Engineering and Applications, 2024, 60(7): 282-291.
[11] LATTANZI S, SOHLER C. A better K-means++ algorithm via local search[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 3662-3671.
[12] FUJIEDA S, TAKAYAMA K, HACHISUKA T. Wavelet convolutional neural networks[J]. arXiv:1805.08620, 2018.
[13] CHEN J R, KAO S H, HE H, et al. Run, don??t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[14] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
[15] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580.
[16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[17] YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 11863-11874.
[18] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[19] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[20] 王鑫杰, 王吉平. YOLO目标检测算法综述[J]. 广西物理, 2024, 45(2): 50-53.
WANG X J, WANG J P. Overview of YOLO target detection algorithms[J]. Guangxi Physics, 2024, 45(2): 50-53.
[21] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[22] VARGHESE R, M S. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems. Piscataway: IEEE, 2024: 1-6.
[23] WANG J, YANG P, LIU Y S, et al. Research on improved YOLOv5 for low-light environment object detection[J]. Electronics, 2023, 12(14): 3089.
[24] 卢俊哲, 张铖怡, 刘世鹏, 等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15): 318-328.
LU J Z, ZHANG C Y, LIU S P, et al. Lightweight DCN-YOLO for strip surface defect detection in complex environments[J]. Computer Engineering and Applications, 2023, 59(15): 318-328.
[25] 李相垚, 侯红玲, 杨澳, 等. 面向钢材表面缺陷检测的DCS-YOLOv8算法研究[J/OL]. 机械科学与技术 [2024-11-07]. https://link.cnki.net/doi/10.13433/j.cnki.1003-8728.20240128.
LI X Y, HOU H L, YANG A, et al. Research on DCS-YOLOv8 algorithm for steel surface defect detection[J/OL]. Mechanical Science and Technology for Aerospace Engineering [2024-11-07]. https://link.cnki.net/doi/10.13433/j.cnki.1003-8728.20240128. |