
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (2): 59-72.DOI: 10.3778/j.issn.1002-8331.2407-0160
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHU Shineng, HAN Meng, YANG Shurong, DAI Zhenlong, YANG Wenyan, DING Jian
Online:2025-01-15
Published:2025-01-15
朱诗能,韩萌,杨书蓉,代震龙,杨文艳,丁剑
ZHU Shineng, HAN Meng, YANG Shurong, DAI Zhenlong, YANG Wenyan, DING Jian. Ensemble Classification Methods for Imbalanced Data Streams[J]. Computer Engineering and Applications, 2025, 61(2): 59-72.
朱诗能, 韩萌, 杨书蓉, 代震龙, 杨文艳, 丁剑. 不平衡数据流的集成分类方法综述[J]. 计算机工程与应用, 2025, 61(2): 59-72.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2407-0160
| [1] GUANG Y, XIA W, JING Z. A dynamic balanced quadtree for real-time streaming data[J]. Knowledge-Based Systems, 2023, 263: 110291. [2] PENG X Y, WANG F Y, LI L. MixGradient: a gradient-based re-weighting scheme with mixup for imbalanced data streams[J]. Neural Networks, 2023, 161: 525-534. [3] PAWE? K. The prior probability in the batch classification of imbalanced data streams[J]. Neurocomputing, 2021, 452: 309-316. [4] QIN J M, WANG C, ZOU Q H, et al. Active learning with extreme learning machine for online imbalanced multiclass classification[J]. Knowledge-Based Systems, 2021, 231: 107385. [5] CHEN Z, SHENG V, EDWARDS A, et al. Cost-sensitive sparse group online learning for imbalanced data streams[J]. Machine Learning, 2023, 113(7): 4407-4444. [6] CHEN Z, SHENG V, EDWARDS A, et al. An effective cost-sensitive sparse online learning framework for imbalanced streaming data classification and its application to online anomaly detection[J]. Knowledge and Information Systems, 2022, 65(1): 59-87. [7] LIANG D C, YI B C. Two-stage three-way enhanced technique for ensemble learning in inclusive policy text classification[J]. Information Sciences, 2021, 547: 271-288. [8] CHEN Y Y, YANG X W, DAI H L. Cost-sensitive continuous ensemble kernel learning for imbalanced data streams with concept drift[J]. Knowledge-Based Systems, 2024, 284: 111272. [9] KLIKOWSKI J, WO?NIAK M. Employing one-class SVM classifier ensemble for imbalanced data stream classification[C]//Proceedings of the International Conference on Computational Science, 2020: 117-127. [10] ZHENG X L, LI P P, WU X D. Data stream classification based on extreme learning machine: a review[J]. Big Data Research, 2022, 30: 100356. [11] AGUIAR G, KRAWCZYK B, CANO A. A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework[J]. Machine Learning, 2023, 113: 4165-4243. [12] 刘允峰, 佟季萱, 叶应图. 动态数据流集成分类算法综述[J]. 渤海大学学报 (自然科学版), 2023, 44(1): 79-91. LIU Y F, TONG J X, YE Y T. Overview of ensemble classification algorithms for dynamic data streams[J]. Journal of Bohai University (Natural Science Edition), 2023, 44(1): 79-91. [13] KRAWCZYK B, MINKU L, GAMA J, et al. Ensemble learning for data stream analysis: a survey[J]. Information Fusion, 2017, 37: 132-156. [14] NOURI Z, KIANI V, FADISHEI H. Rarity updated ensemble with oversampling: an ensemble approach to classification of imbalanced data streams[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2024, 17(1): 11662. [15] IRENEUSZ C. Weighted ensemble with one-class classification and over-sampling and instance selection (WECOI): an approach for learning from imbalanced data streams[J]. Journal of Computational Science, 2022, 61: 101614. [16] KLIKOWSKI J, WO?NIAK M. Multi sampling random subspace ensemble for imbalanced data stream classification[J]. Progress in Computer Recognition Systems, 2020, 977: 360-369. [17] WEGIER W, KSIENIEWICZ P. Application of imbalanced data classification quality metrics as weighting methods of the ensemble data stream classification algorithms[J]. Entropy, 2022, 22(8): 849. [18] ZHANG Y, DU H L, KE G, et al. Dynamic weighted selective ensemble learning algorithm for imbalanced data streams[J]. The Journal of Supercomputing, 2021, 78(4): 5394-5419. [19] MALIALIS K, PANAYIOTOU C, POLYCARPOU M. Nonstationary data stream classification with online active learning and siamese neural networks[J]. Neurocomputing, 2022, 512: 235-252. [20] 梁斌, 李光辉, 代成龙. 面向概念漂移且不平衡数据流的G-mean加权分类方法[J]. 计算机研究与发展, 2022, 59(12): 2844-2857. LIANG B, LI G H, DAI C L. G-mean weighted classification method for concept drifting and imbalanced data streams[J]. Journal of Computer Research and Development, 2022, 59(12): 2844-2857. [21] 董明刚, 张伟, 敬超. 面向不平衡数据流的动态权重集成分类算法[J]. 小型微型计算机系统, 2020, 41(8): 1649-1655. DONG M G, ZHANG W, JING C. Dynamic weight ensemble integration classification algorithm for imbalanced data stream based on sampling[J]. Journal of Chinese Computer Systems, 2020, 41(8): 1649-1655. [22] GRZYB J, KLIKOWSKI J, WO?NIAK M. Hellinger distance weighted ensemble for imbalanced data stream classification[J]. Journal of Computational Science, 2021, 51: 101314. [23] JIAO B T, GUO Y N, GONG D W, et al. Dynamic ensemble selection for imbalanced data streams with concept drift[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1) : 1278-1291. [24] 赵强利, 蒋艳凰. 类别严重不均衡应用的在线数据流学习算法[J]. 计算机科学, 2017, 44(6): 255-259. ZHAO Q L, JIANG Y H. Online data stream mining for seriously unbalanced applica-tions[J]. Computer Science, 2017, 44(6): 255-259. [25] HAN M, ZHANG X L, CHEN Z Q, et al. Dynamic ensemble selection classification algorithm based on window over imbalanced drift data stream[J]. Knowledge and Information Systems, 2022, 65(3): 1105-1128. [26] 张喜龙, 韩萌, 陈志强, 等. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92. ZHANG X L, HAN M, CHEN Z Q, et al. Boosting classification algorithm for imbalanced drift data stream based on dynamic ensemble selection[J]. Journal of Shandong University (Engineering Science), 2023, 53(4): 83-92. [27] PRIYA S, HARIBHARATHI S, VIJAY A R. Imbalanced data stream classification using dynamic ensemble selection[C]//Proceedings of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering, 2023: 1-5. [28] REN S Q, ZHU W, LIAO B, et al. Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning[J]. Knowledge-Based Systems, 2019, 163: 705-722. [29] ZYBLEWSKI P, KSIENIEWICZ P, WO?NIAK M. Classifier selection for highly imbalanced data streams with minority driven ensemble[J]. Artificial Intelligence and Soft Computing, 2019, 11508: 626-635. [30] BERNARDO A, VALLE E D. SMOTE-OB: combining SMOTE and online bagging for continuous rebalancing of evolving data streams[C]//Proceedings of the 2021 IEEE International Conference on Big Data, 2021: 5033-5042. [31] BILAL M, LIN Z P, CAO J W, et al. Voting based weighted online sequential extreme learning machine for imbalance multi-class classification[C]//Proceedings of the 2015 IEEE International Symposium on Circuits and Systems, 2015: 565-568. [32] WANG S, MINKU L L, YAO X. Resampling-based ensemble methods for online class imbalance learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5): 1356-1368. [33] SUN Y G, WANG Z H, LI H T, et al. A novel ensemble classification for data streams with class imbalance and concept drift[J]. International Journal of Performability Engineering, 2017, 13(6): 945-955. [34] SADEGHI F, VIKTOR H L, VAFAIE P. DynaQ: online learning from imbalanced multi-class streams through dynamic sampling[J]. Applied Intelligence, 2023, 53(21): 24908-24930. [35] DU H L, ZHANG Y, GANG K, et al. Online ensemble learning algorithm for imbalanced data stream[J]. Applied Soft Computing, 2021, 107: 107378. [36] SUN Y G, LI M, LI L, et al. Cost-sensitive classification for evolving data streams with concept drift and class imbalance[J]. Computational Intelligence and Neuroscience, 2021, 2021(1): 8813806. [37] SUN Y G, SUN Y, DAI H H. Two-stage cost-sensitive learning for data streams with concept drift and class imbalance[J]. IEEE Access, 2020, 8: 191942-191955. [38] 孙艳歌, 邵罕, 杨艳聪. 基于代价敏感不平衡数据流分类算法[J]. 信阳师范学院学报 (自然科学版), 2019, 32(4): 670-674. SUN Y G, SHAO H, YANG Y C. Classification for imbalanced data streams based on cost-sensitive[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(4): 670-674. [39] PEPSI M , KUMAR N. Hybrid firefly optimised ensemble classification for drifting data streams with imbalance[J]. Knowledge-Based Systems, 2024, 288: 111500. [40] WANG L W, YAN Y C, GUO W. Ensemble online weighted sequential extreme learning machine for class imbalanced data streams[C]//Proceedings of the 2021 2nd International Symposium on Computer Engineering and Intelligent Communications, 2021: 81-86. [41] ZHANG W B, WANG J W. A hybrid learning framework for imbalanced stream classification[C]//Proceedings of the IEEE International Congress on Big Data, 2017: 480-487. [42] 李艳红, 任霖, 王素格, 等. 非平衡数据流在线主动学习方法[J]. 自动化学报, 2024, 50(7): 1389-1401. LI Y H, REN L, WANG S G, et al. Online active learning method for imbalanced data stream[J]. Acta Automatica Sinica, 2024, 50(7): 1389-1401. [43] HALDER B, HASAN A K M, AMAGASA T, et al. Autonomic active learning strategy using cluster-based ensemble classifier for concept drifts in imbalanced data stream[J]. Expert Systems with Applications, 2023, 231: 120578. [44] ZHANG H, LIU W K, SHAN J C, et al. Online active learning paired ensemble for concept drift and class imbalance[J]. IEEE Access, 2018, 6: 73815-73828. [45] KORYCKI ?, CANO A, KRAWCZYK B. Active learning with abstaining classifiers for imbalanced drifting data streams[C]//Proceedings of the IEEE International Conference on Big Data, 2019: 2334-2343. [46] ZHANG H, LIU W K, LIU Q B. Reinforcement online active learning ensemble for drifting imbalanced data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3971-3983. [47] HALDER B, HASAN K M A. A hybrid labeling strategy for imbalanced data stream in presence of concept drifts[C]//Proceedings of the 2022 25th International Conference on Computer and Information Technology, 2022: 797-802. [48] LI Z, HUANG W C, XIONG Y, et al. Incremental learning imbalanced data streams with concept drift: the dynamic updated ensemble algorithm[J]. Knowledge-Based Systems, 2020, 195: 105694. [49] JIANG J, LIU F, WING W, et al. Dynamic incremental ensemble fuzzy classifier for data streams in green internet of things[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(3): 1316-1329. [50] NG W W Y, ZHANG J J, LAI C S, et al. Cost-sensitive weighting and imbalance-reversed bagging for streaming imbalanced and concept drifting in electricity pricing classification[J]. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1588-1597. [51] LU Y, CHEUNG Y M, TANG Y Y. Dynamic weighted majority for incremental learning of imbalanced data streams with concept drift[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2017: 2393-2399. [52] DITZLER G, POLIKAR R. Incremental learning of concept drift from streaming imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(10): 2283-2301. [53] LU Y , CHEUNG Y M, TANG Y Y. Adaptive chunk-based dynamic weighted majority for imbalanced data streams with concept drift[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(8): 2764-2778. [54] KARIMIAN M, BEIGY H. Concept drift handling: a domain adaptation perspective[J]. Expert Systems with Applications, 2023, 224: 119946. [55] LIU Y S, WANG S, SUI H, et al. An ensemble learning method with GAN-based sampling and consistency check for anomaly detection of imbalanced data streams with concept drift[J]. PLOS ONE, 2024, 19(1): 0292140. [56] GUO Y N, PU J Y, JIAO B T, et al. Online semi-supervised rithm for concept drift and class imbalance data streams[J]. Acta Electronica Sinica, 2022, 50(3): 585-597. [58] WANG Z X, SUN G, ZHAO J, et al. An ensemble classification algorithm for imbalanced data streams with unlabeled data[C]//Proceedings of the International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 2021: 1203-1210. [59] JUNAID K, PAULRAJ D, SETHUKARASI T. A comprehensive ensemble classification techniques detecting and managing concept drift in dynamic imbalanced data streams[J]. Wireless Networks, 2024: 269355237. [60] ANCY S, PAULRAJ D. Handling imbalanced data with concept drift by applying dynamic sampling and ensemble classification model[J]. Computer Communications, 2020, 153: 553-560. [61] 袁磊, 季梦遥. 概念漂移不平衡数据流随机平衡采样分类算法[J]. 湖北大学学报(自然科学版), 2019, 41(1): 95-100. YUAN L, JI M Y. Mining concept-drifting imbalanced streams using random sampling algorithm[J]. Journal of Hubei University(Natural Science), 2019, 41(1): 95-100. [62] LUKASZ K, BARTOSZ K. Concept drift detection from multi-class imbalanced data streams[C]//Proceedings of the IEEE 37th International Conference on Data Engineering, 2021: 1068-1079. [63] LIU W K, ZHANG H, DING Z Y, et al. A comprehensive active learning method for multiclass imbalanced data streams with concept drift[J]. Knowledge-Based Systems, 2021, 215: 106778. [64] KHANDEKAR V S, SHRINATH P. Hybrid dynamic chunk ensemble model for multi-class data streams[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2022, 25(2): 1115. [65] MADKOUR A, ABDELKADER H, MOHAMMED A. Dynamic classification ensembles for handling imbalanced multiclass drifted data streams[J]. Information Sciences, 2024, 670: 120555. [66] VAFAIE P, VIKTOR H, MICHALOWSKI W. Multi-class imbalanced semi-supervised learning from streams through online ensembles[C]//Proceedings of the International Conference on Data Mining Workshops, 2020: 867-874. [67] LI A, HAN M, MU D L, et al. Online active learning method for multi-class imbalanced data stream[J]. Knowledge and Information Systems, 2023, 66: 2355-2391. [68] WANG P F, JIN N L, WOO W L, et al. Noise tolerant drift detection method for data stream mining[J]. Information Sciences, 2022, 609: 1318-1333. [69] CANO A, KRAWCZYK B. ROSE: robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams[J]. Machine Learning, 2022, 111(7): 2561-2599. [70] ZYBLEWSKI P, SABOURIN R, WO?NIAK M. Preprocessed dynamic classifier ensemble selection for highly imbalanced drifted data streams[J]. Information Fusion, 2021, 66: 138-154. [71] CANO A, KRAWCZYK B. Kappa updated ensemble for drifting data stream mining[J]. Machine Learning, 2019, 109(1): 175-218. [72] KLIKOWSKI J, WO?NIAK M. Deterministic sampling classifier with weighted bagging for drifted imbalanced data stream classification[J]. Applied Soft Computing, 2022, 122: 108855. [73] PAN S R, WU J, ZHU X Q, et al. Graph ensemble boosting for imbalanced noisy graph stream classification[J]. IEEE Transactions on Cybernetics, 2015, 45(5): 954-968. [74] SANTOS M S, ABREU P H, JAPKOWICZ N, et al. On the joint-effect of class imbalance and overlap: a critical review[J]. Artificial Intelligence Review, 2022, 55(8): 6207-6275. [75] USMAN M, CHEN H H. Pro-IDD: Pareto-based ensemble for imbalanced and drifting data streams[J]. Knowledge-Based Systems, 2023, 282: 111103. [76] REN S Q, LIAO B, ZHU W, et al. The gradual resampling ensemble for mining imbalanced data streams with concept drift[J]. Neurocomputing, 2018, 286: 150-166. |
| [1] | ZHANG Xianchao, ZHOU Hong. Robust Scheduling of Two-Stage Flow Shop with Interval Processing Times [J]. Computer Engineering and Applications, 2023, 59(20): 266-273. |
| [2] | REN Yanping, ZHENG Zhong, JIANG Yifei, YAN Yuanting, ZHANG Yanping. Posterior Probability and Density-Based Imbalanced Data Undersampling [J]. Computer Engineering and Applications, 2022, 58(23): 268-277. |
| [3] | WANG Liangnan, XIAO Di. Research on FDT ensemble methods based on CCS optimization [J]. Computer Engineering and Applications, 2018, 54(5): 127-131. |
| [4] | HAI Yujiao, LIU Qingkun. ELM weighting ensemble classification based on differential evolution [J]. Computer Engineering and Applications, 2017, 53(8): 57-60. |
| [5] | YIN Shaohong, ZHANG Panpan. Ensemble classification algorithm for data stream based on repeatability of concept [J]. Computer Engineering and Applications, 2016, 52(12): 80-84. |
| [6] | HU Xiongge, WANG Yaonan. Research on moving objects detection by using random strategy [J]. Computer Engineering and Applications, 2013, 49(13): 128-132. |
| [7] | YAN Lin1, YAN Shuo2. Decision system’s decomposition and decision’s transfer based on granular computing [J]. Computer Engineering and Applications, 2012, 48(4): 13-17. |
| [8] | ZHANG Baohua. Application of decision rules classifier in network intrusion detection [J]. Computer Engineering and Applications, 2012, 48(26): 93-95. |
| [9] | GAO Jianshan1,2,LU Shiwen3. Study on classification evaluation method of library website based on the dominance rough set theory [J]. Computer Engineering and Applications, 2011, 47(8): 47-50. |
| [10] | DU Lei,GUAN Yan-yong,YANG Fang. Decision rules optimization of fuzzy object information systems based on dominance relation [J]. Computer Engineering and Applications, 2010, 46(35): 136-138. |
| [11] | WANG Hong-xu. Synthesis decision rule of vague sets and it’s application in scheme optimum seeking [J]. Computer Engineering and Applications, 2010, 46(27): 145-147. |
| [12] | CHEN Ke1,ZHANG Bao-ming1,XIE Ming-xia1,2. Application of fuzzy bayes theory in change detection of remote sensing images [J]. Computer Engineering and Applications, 2010, 46(19): 185-188. |
| [13] | DING Wei-ping1,2,DONG Jian-cheng1,WANG Bin3,SHI Quan1,SHI Zhen-guo1. Research and design of electronic patient record mining model based on rough concept lattice [J]. Computer Engineering and Applications, 2010, 46(18): 215-219. |
| [14] | SANG Yan-li,LIANG Ji-ye. Algorithm of decision rules mining based on rough information vector [J]. Computer Engineering and Applications, 2009, 45(17): 136-138. |
| [15] | SHEN Jin-biao,LV Yue-jin. Decision rules acquisition algorithm for personalized knowledge based on rough set and rule presentation [J]. Computer Engineering and Applications, 2009, 45(14): 122-124. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||