[1] SHIM S, KIM J, LEE S W, et al. Road damage detection using super-resolution and semi-supervised learning with generative adversarial network[J]. Automation in Construction, 2022, 135: 104139.
[2] 马建, 赵祥模, 贺拴海, 等. 路面检测技术综述[J]. 交通运输工程学报, 2017, 17(5): 121-137.
MA J, ZHAO X M, HE S H, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137.
[3] ARYA D, MAEDA H, GHOSH S K, et al. Deep learning-based road damage detection and classification for multiple countries[J]. Automation in Construction, 2021, 132: 103935.
[4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[6] 孙朝云, 裴莉莉, 李伟, 等. 基于改进Faster R-CNN的路面灌封裂缝检测方法[J]. 华南理工大学学报 (自然科学版), 2020, 48(2): 84-93.
SUN Z Y, PEI L L, LI W, et al. Pavement sealed crack detection method based on improved Faster R-CNN[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(2): 84-93.
[7] HACIEFENDIO?LUK, BA?A?A H B. Concrete road crack detection using deep learning-based Faster R-CNN method[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022, 46(2): 1621-1633.
[8] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[10] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[11] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[12] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[13] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[14] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[15] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision(ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016: 21-37.
[16] WANG W, SU C. Convolutional neural network-based pavement crack segmentation using pyramid attention network[J]. IEEE Access, 2020, 8: 206548-206558.
[17] WAN F, SUN C, HE H, et al. YOLO-LRDD: a lightweight method for road damage detection based on improved YOLOv5s[J]. EURASIP Journal on Advances in Signal Processing, 2022 (1): 98.
[18] PEI Z, LIN R, ZHANG X, et al. CFM: a consistency filtering mechanism for road damage detection[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), 2020: 5584-5591.
[19] DU Y, PAN N, XU Z, et al. Pavement distress detection and classification based on YOLO network[J]. International Journal of Pavement Engineering, 2021, 22(13): 1659-1672.
[20] YAN K, ZHANG Z. Automated asphalt highway pavement crack detection based on deformable single shot multi-box detector under a complex environment[J]. IEEE Access, 2021, 9: 150925-150938.
[21] LUO H, LI J, CAI L, et al. STrans-YOLOX: fusing swin Transformer and YOLOX for automatic pavement crack detection[J]. Applied Sciences, 2023, 13(3): 1999.
[22] 李松, 史涛, 井方科. 改进YOLOv8的道路损伤检测算法[J]. 计算机工程与应用, 2023, 59(23): 165-174.
LI S, SHI T, JING F K. Improved road damage detection algorithm of YOLOv8[J]. Computer Engineering and Applications, 2023, 59(23): 165-174.
[23] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[24] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2022: 443-459.
[25] XIA Z, PAN X, SONG S, et al. Vision transformer with deformable attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4794-4803.
[26] ARYA D, MAEDA H, GHOSH S K, et al. RDD2022: a multi-national image dataset for automatic road damage detection[J]. arXiv:2209.08538, 2022.
[27] DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 7369-7378.
[28] XIANG W, WANG H, XU Y, et al. Road disease detection algorithm based on YOLOv5s-DSG[J]. Journal of Real-Time Image Processing, 2023, 20(3): 56.
[29] ZHU J, ZHONG J, MA T, et al. Pavement distress detection using convolutional neural networks with images captured via UAV[J]. Automation in Construction, 2022, 133: 103991. |