
Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (24): 20-43.DOI: 10.3778/j.issn.1002-8331.2403-0405
• Research Hotspots and Reviews • Previous Articles Next Articles
WANG Ning, ZHANG Dan, XU Chenhao, SONG Meihua, ZHANG Jianpeng, PENG Quanhong
Online:2024-12-15
Published:2024-12-12
王宁,张丹,徐辰昊,宋美华,张建鹏,彭泉鸿
WANG Ning, ZHANG Dan, XU Chenhao, SONG Meihua, ZHANG Jianpeng, PENG Quanhong. Functional Maps and Its Application in Non-Rigid 3D Shape Correspondence[J]. Computer Engineering and Applications, 2024, 60(24): 20-43.
王宁, 张丹, 徐辰昊, 宋美华, 张建鹏, 彭泉鸿. 泛函映射及其在非刚性三维形状对应领域应用综述[J]. 计算机工程与应用, 2024, 60(24): 20-43.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2403-0405
| [1] ABATE A F, NAPPI M, RICCIO D, et al. 2D and 3D face recognition: a survey[J]. Pattern Recognition Letters, 2007, 28(14): 1885-1906. [2] KILIAN M, MITRA N J, POTTMANN H. Geometric modeling in shape space[J]. ACM Transactions on Graphics (TOG), 2007, 26(3): 64. [3] BERKITEN S, HALBER M, SOLOMON J, et al. Learning detail transfer based on geometric features[J]. Computer Graphics Forum, 2017, 36(2): 361-373. [4] ALEXA M. Recent advances in mesh morphing[J]. Computer Graphics Forum, 2002, 21(2): 173-198. [5] RAVIV D, BRONSTEIN A M, BRONSTEIN M M, et al. Equi-affine invariant geometry for shape analysis[J]. Journal of Mathematical Imaging and Vision, 2014, 50: 144-163. [6] VAN KAICK O, ZHANG H, HAMARNEH G, et al. A survey on shape correspondence[J]. Computer Graphics Forum, 2011, 30(6): 1681-1707. [7] SAHILLIO?LU Y. Recent advances in shape correspond-ence[J]. The Visual Computer, 2020, 36(8): 1705-1721. [8] BRONSTEIN M M, BRONSTEIN A M. On a relation between shape recognition algorithms based on distributions of distances: Technical Report (CIS-2009-14) Technion[R]. 2009-06. [9] BRONSTEIN A M. Spectral descriptors for deformable shapes[J]. arXiv:1110.5015, 2011. [10] LITMAN R, BRONSTEIN A M. Learning spectral descriptors for deformable shape correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(1): 171-180. [11] PATANé G. Laplacian spectral distances and kernels on 3D shapes[J]. Pattern Recognition Letters, 2014, 47: 102-110. [12] LI C, BEN HAMZA A. Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey[J]. Multimedia Systems, 2014, 20: 253-281. [13] BIASOTTI S, CERRI A, BRONSTEIN A, et al. Recent trends, applications, and perspectives in 3D shape similarity assessment[J]. Computer Graphics Forum, 2016, 35(6): 87-119. [14] PATANé G. Accurate and efficient computation of laplacian spectral distances and kernels[J]. Computer Graphics Forum, 2017, 36(1): 184-196. [15] PATANè G. An introduction to laplacian spectral distances and kernels: theory, computation, and applications[C]//Proceedings of the ACM SIGGRAPH 2017, 2017: 1-54. [16] JOVANOVI? I, STANI? Z. Spectral distances of graphs[J]. Linear Algebra and Its Applications, 2012, 436(5): 1425-1435. [17] OVSJANIKOV M, BEN-CHEN M, SOLOMON J, et al. Functional maps: a flexible representation of maps between shapes[J]. ACM Transactions on Graphics (ToG), 2012, 31(4): 1-11. [18] HUANG Q, WANG F, GUIBAS L. Functional map net-works for analyzing and exploring large shape collections[J]. ACM Transactions on Graphics (ToG), 2014, 33(4): 1-11. [19] CORMAN E, OVSJANIKOV M, CHAMBOLLE A. Supervised descriptor learning for non-rigid shape matching[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 283-298. [20] CORMAN E, OVSJANIKOV M, CHAMBOLLE A. Continuous matching via vector field flow[J]. Computer Graphics Forum, 2015, 34(5): 129-139. [21] GANAPATHI‐SUBRAMANIAN V, THIBERT B, OVSJANIKOV M, et al. Stable region correspondences between non‐isometric shapes[J]. Computer Graphics Forum, 2016, 35(5): 121-133. [22] NOGNENG D, OVSJANIKOV M. Informative descriptor preservation via commutativity for shape matching[J]. Computer Graphics Forum, 2017, 36(2): 259-267. [23] HUANG R, OVSJANIKOV M. Adjoint map representation for shape analysis and matching[J]. Computer Graphics Forum, 2017, 36(5): 151-163. [24] RODOLà E, COSMO L, BRONSTEIN M M, et al. Partial functional correspondence[J]. Computer Graphics Forum, 2017, 36(1): 222-236. [25] LITANY O, RODOLà E, BRONSTEIN A M, et al. Fully spectral partial shape matching[J]. Computer Graphics Forum, 2017, 36(2): 247-258. [26] VESTNER M, LITMAN R, RODOLA E, et al. Product manifold filter: non-rigid shape correspondence via kernel density estimation in the product space[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3327-3336. [27] LITANY O, REMEZ T, RODOLA E, et al. Deep functional maps: structured prediction for dense shape correspondence[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 5659-5667. [28] POULENARD A, SKRABA P, OVSJANIKOV M. Topo-logical function optimization for continuous shape matching[J]. Computer Graphics Forum, 2018, 37(5): 13-25. [29] REN J, POULENARD A, WONKA P, et al. Continuous and orientation-preserving correspondences via functional maps[J]. ACM Transactions on Graphics (ToG), 2018, 37(6): 1-16. [30] MELZI S, REN J, RODOLA E, et al. Zoomout: spectral upsampling for efficient shape correspondence[J]. arXiv:1904.07865, 2019. [31] EZUZ D, SOLOMON J, BEN-CHEN M. Reversible harmonic maps between discrete surfaces[J]. ACM Transactions on Graphics (ToG), 2019, 38(2): 1-12. [32] HUANG R, ACHLIOPTAS P, GUIBAS L, et al. Limit shapes—a tool for understanding shape differences and var-iability in 3D model collections[J]. Computer Graphics Forum, 2019, 38(5): 187-202. [33] HALIMI O, LITANY O, RODOLA E, et al. Unsupervised learning of dense shape correspondence[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4370-4379. [34] ROUFOSSE J M, SHARMA A, OVSJANIKOV M. Unsupervised deep learning for structured shape matching[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1617-1627. [35] HUANG R, REN J, WONKA P, et al. Consistent Zoomout: efficient spectral map synchronization[J]. Computer Graphics Forum, 2020, 39(5): 265-278. [36] EISENBERGER M, LAHNER Z, CREMERS D. Smooth shells: multi-scale shape registration with functional maps[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12265-12274. [37] DONATI N, SHARMA A, OVSJANIKOV M. Deep geo-metric functional maps: robust feature learning for shape correspondence[C]//Proceedings of the IEEE/CVF Confer-ence on Computer Vision and Pattern Recognition, 2020: 8592-8601. [38] EISENBERGER M, TOKER A, LEAL-TAIXé L, et al. Deep shells: unsupervised shape correspondence with optimal transport[C]//Advances in Neural Information Processing Systems, 2020: 10491-10502. [39] HU L, LI Q, LIU S, et al. Efficient deformable shape corre-spondence via multiscale spectral manifold wavelets preservation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14536-14545. [40] 杨军, 王博. 非刚性部分模型与完整模型的对应关系计算[J]. 武汉大学学报, 2021, 46(3): 434-441. YANG J, WANG B. Correspondence calculation between non-rigid partial models and complete models[J]. Journal of Wuhan University, 2021, 46(3): 434-441. [41] PANINE M, KIRGO M, OVSJANIKOV M. Non‐isometric shape matching via functional maps on landmark‐adapted bases[J]. Computer Graphics Forum, 2022, 41(6): 394-417. [42] DONATI N, CORMAN E, OVSJANIKOV M. Deep orientation-aware functional maps: tackling symmetry issues in shape matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 742-751. [43] LIU S, XU H, YAN D M, et al. WTFM layer: an effective map extractor for unsupervised shape correspondence[J]. Computer Graphics Forum, 2022, 41(7): 51-61. [44] LI L, DONATI N, OVSJANIKOV M. Learning multi-resolution functional maps with spectral attention for robust shape matching[C]//Advances in Neural Information Processing Systems, 2022: 29336-29349. [45] 杨军, 李金泰. 混合式监督学习的三维模型对应关系计算[J]. 西安电子科技大学学报, 2022, 49(4): 201-212. YANG J, LI J T. Correspondence calculation of 3D models using hybrid supervised learning[J]. Journal of Xidian Uni-versity, 2022, 49(4): 201-212. [46] MAGNET R, OVSJANIKOV M. Scalable and efficient functional map computations on dense meshes[J]. Computer Graphics Forum, 2023, 42(2): 89-101. [47] HARTWIG F, SASSEN J, AZENCOT O, et al. An elastic basis for spectral shape correspondence[C]//Proceedings of the ACM SIGGRAPH 2023, 2023: 1-11. [48] ATTAIKI S, LI L, OVSJANIKOV M. Generalizable local feature pre-training for deformable shape analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 13650-13661. [49] SUN M, MAO S, JIANG P, et al. Spatially and spectrally consistent deep functional maps[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 14497-14507. [50] HU L, LI Q, LIU S, et al. RFMNet: robust deep functional maps for unsupervised non-rigid shape correspondence[J]. Graphical Models, 2023, 129: 101189. [51] 吴衍, 杨军. 内外特征一致性对齐的非等距三维模型对应关系计算[J]. 计算机辅助设计与图形学学报, 2023, 35(5): 749-759. WU Y, YANG J. Correspondence calculation of non-isometric 3d models with intrinsic-extrinsic feature alignment[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(5): 749-759. [52] MAGNET R, OVSJANIKOV M. Memory-scalable and simplified functional map learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 4041-4050. [53] LUO F, LI Q, HU L, et al. Deep MSFOP: multiple spectral filter operators preservation in deep functional maps for unsupervised shape matching[J]. arXiv:2402.03904, 2024. [54] OVSJANIKOV M, CORMAN E, BRONSTEIN M, et al. Computing and processing correspondences with functional maps[C]//Proceedings of the Siggraph Asia 2016, 2016: 1-60. [55] CHOUKROUN Y, SHTERN A, BRONSTEIN A, et al. Hamiltonian operator for spectral shape analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 26(2): 1320-1331. [56] RUSTAMOV R M. Laplace-Beltrami eigenfunctions for deformation invariant shape representation[C]//Proceedings of the Symposium on Geometry Processing, 2007: 225-233. [57] 张丹, 武仲科, 王醒策, 等. 非刚性三维形状匹配中基于谱分析的形状描述符综述[J]. 软件学报, 2019, 30(8): 2545-2568. ZHANG D, WU Z K, WANG X C, et al. A review of spec-tral analysis based shape descriptors in non-rigid 3d shape matching[J]. Journal of Software, 2019, 30(8): 2545-2568. [58] MEYER M, DESBRUN M, SCHR?DER P, et al. Discrete differential-geometry operators for triangulated 2-manifolds[C]//Proceedings of the Visualization and Mathematics III, 2003: 35-57. [59] AUBRY M, SCHLICKEWEI U, CREMERS D. The wave kernel signature: a quantum mechanical approach to shape analysis[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops, 2011: 1626-1633. [60] SUN J, OVSJANIKOV M, GUIBAS L. A concise and provably informative multi‐scale signature based on heat diffusion[J]. Computer Graphics Forum, 2009, 28(5): 1383-1392. [61] SKRABA P, OVSJANIKOV M, CHAZAL F, et al. Persistence-based segmentation of deformable shapes[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 45-52. [62] TAM G K L, CHENG Z Q, LAI Y K, et al. Registration of 3D point clouds and meshes: a survey from rigid to nonrigid[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 19(7): 1199-1217. [63] BRONSTEIN A M, BRONSTEIN M M, KIMMEL R. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching[J]. Proceedings of the National Academy of Sciences, 2006, 103(5): 1168-1172. [64] MéMOLI F. On the use of Gromov-Hausdorff distances for shape comparison[C]//Proceedings of the Eurographics Symposium on Point-Based Graphics, 2007. [65] CHETVERIKOV D, SVIRKO D, STEPANOV D, et al. The trimmed iterative closest point algorithm[C]//Proceedings of the 2002 International Conference on Pattern Recognition, 2002: 545-548. [66] HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 129-150. [67] LEONARDI N, VAN DE VILLE D. Tight wavelet frames on multislice graphs[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3357-3367. [68] BRONSTEIN A M, BRONSTEIN M M, KIMMEL R. Numerical geometry of non-rigid shapes[M]. Berlin: Springer Science & Business Media, 2008. [69] BRONSTEIN A M, BRONSTEIN M M, BRUCKSTEIN A M, et al. Partial similarity of objects, or how to compare a centaur to a horse[J]. International Journal of Computer Vision, 2009, 84: 163-183. [70] COSMO L, RODOLA E, MASCI J, et al. Matching deformable objects in clutter[C]//Proceedings of the 2016 4th International Conference on 3D Vision (3DV), 2016: 1-10. [71] LITANY O, RODOLà E, BRONSTEIN A M, et al. Nonrigid puzzles[J]. Computer Graphics Forum, 2016, 35(5): 135-143. [72] MELZI S, RODOLà E, CASTELLANI U, et al. Localized manifold harmonics for spectral shape analysis[J]. Computer Graphics Forum, 2018, 37(6): 20-34. [73] RUSTAMOV R M, OVSJANIKOV M, AZENCOT O, et al. Map-based exploration of intrinsic shape differences and variability[J]. ACM Transactions on Graphics (TOG), 2013, 32(4): 1-12. [74] SAHILLIO?LU Y, YEMEZ Y. Coarse‐to‐fine combi-natorial matching for dense isometric shape correspondence[J]. Computer Graphics Forum, 2011, 30(5): 1461-1470. [75] AIGERMAN N, LIPMAN Y. Hyperbolic orbifold tutte embeddings[J]. ACM Transactions on Graphics, 2016, 35(6): 1-14. [76] GEMAN D, YANG C. Nonlinear image recovery with half-quadratic regularization[J]. IEEE transactions on Image Processing, 1995, 4(7): 932-946. [77] EZUZ D, HEEREN B, AZENCOT O, et al. Elastic corre-spondence between triangle meshes[J]. Computer Graphics Forum, 2019, 38(2): 121-134. [78] NORRIS J R. Markov chains[M]. Cambridge: Cambridge University Press, 1998. [79] MYRONENKO A, SONG X. Point set registration: coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275. [80] KOVNATSKY A, GLASHOFF K, BRONSTEIN M M. MADMM: a generic algorithm for non-smooth optimization on manifolds[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 680-696. [81] SIDI O, VAN KAICK O, KLEIMAN Y, et al. Unsuper-vised co-segmentation of a set of shapes via descriptor-space spectral clustering[C]//Proceedings of the 2011 SIGGRAPH Asia Conference, 2011: 1-10. [82] HUANG Q, KOLTUN V, GUIBAS L. Joint shape segmentation with linear programming[J]. ACM Transactions on Graphics, 2011, 30(6): 125. [83] HU R, FAN L, LIU L. Co‐segmentation of 3D shapes via subspace clustering[J]. Computer Graphics Forum, 2012, 31(5): 1703-1713. [84] ALHASHIM I, XU K, ZHUANG Y, et al. Deformation-driven topology-varying 3D shape correspondence[J]. ACM Transactions on Graphics (TOG), 2015, 34(6): 1-13. [85] KOVNATSKY A, BRONSTEIN M M, BRONSTEIN A M, et al. Coupled quasi‐harmonic bases[J]. Computer Graphics Forum, 2013, 32(4): 439-448. [86] TOMBARI F, SALTI S, DI STEFANO L. Unique signa-tures of histograms for local surface description[C]//Proceedings of the 11th European Conference on Computer Vision, 2010: 356-369. [87] WEI L, HUANG Q, CEYLAN D, et al. Dense human body correspondences using convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1544-1553. [88] VESTNER M. 3.21 dense non-rigid shape correspondence using random forests[Z]. New Perspectives in Shape Analysis. [89] MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5115-5124. [90] BOSCAINI D, MASCI J, RODOLà E, et al. Learning shape correspondence with anisotropic convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2016: 3189-3197. [91] ELAD A, KIMMEL R. On bending invariant signatures for surfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1285-1295. [92] AFLALO Y, DUBROVINA A, KIMMEL R. Spectral gen-eralized multi-dimensional scaling[J]. International Journal of Computer Vision, 2016, 118: 380-392. [93] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral net-works and locally connected networks on graphs[J]. arXiv:1312.6203, 2013. [94] HENAFF M, BRUNA J, LECUN Y. Deep convolutional networks on graph-structured data[J]. arXiv:1506.05163, 2015. [95] SHARP N, ATTAIKI S, CRANE K, et al. Diffusionnet: discretization agnostic learning on surfaces[J]. ACM Transactions on Graphics (TOG), 2022, 41(3): 1-16. [96] DONATI N, CORMAN E, MELZI S, et al. Complex func-tional maps: a conformal link between tangent bundles[J]. Computer Graphics Forum, 2022, 41(1): 317-334. [97] CUTURI M. Sinkhorn distances: lightspeed computation of optimal transport[C]//Advances in Neural Information Pro-cessing Systems, 2013: 2292-2300. [98] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660. [99] KINGMA D P, BA J. ADAM: a method for stochastic opti-mization[J]. arXiv:1412.6980, 2014. [100] MELZI S, MARIN R, RODOLà E, et al. SHREC’19: matching humans with different connectivity[C]//Proceedings of the Eurographics Workshop on 3D Object Retrieval, 2019. [101] LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[J]. ACM Transactions on Graphics, 2023, 34(6): 851-866. [102] BOGO F, ROMERO J, LOPER M, et al. FAUST: dataset and evaluation for 3D mesh registration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 3794-3801. [103] ANGUELOV D, SRINIVASAN P, KOLLER D, et al. SCAPE: shape completion and animation of people[J]. ACM Transactions on Graphics (TOG), 2005, 24(3): 408-416. [104] ZUFFI S, KANAZAWA A, JACOBS D W, et al. 3D menagerie: modeling the 3D shape and pose of animals[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6365-6373. [105] KIM V G, LIPMAN Y, FUNKHOUSER T. Blended intrinsic maps[J]. ACM Transactions on Graphics (TOG), 2011, 30(4): 1-12. |
| [1] | ZHOU Chunyan1, PAN Xiang2, CHEN Qihua3. 3D shape correspondence by combing spectral transformation and Markov model [J]. Computer Engineering and Applications, 2014, 50(20): 167-170. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||