[1] CHEN J, SUN J, WANG G. From unmanned systems to autonomous intelligent systems[J]. Engineering, 2022, 12: 16-19.
[2] LIU Z, WANG Y, LIANG X, et al. A graph neural networks-based deep Q-learning approach for job shop scheduling problems in traffic management[J]. Information Sciences, 2022, 607: 1211-1223.
[3] 刘锋, 徐杰, 柯文博. 基于深度强化学习的服装缝制过程实时动态调度[J]. 纺织学报, 2022, 43(9): 41-48.
LIU F, XU J, KE W B. Real time dynamic scheduling of clothing sewing process based on deep reinforcement learning[J]. Journal of Textile, 2022, 43(9): 41-48.
[4] XIE J, GAO L, PENG K, et al. Review on flexible job shop scheduling[J]. IET Collaborative Intelligent Manufacturing, 2019, 1(3): 67-77.
[5] TORRES A D R, ANDREIANA D S, ROLDáN O á, et al. A review of deep reinforcement learning approaches for smart manufacturing in industry 4.0 and 5.0 framework[J]. Applied Sciences, 2022, 12(23): 12377.
[6] DEMIR Y, ??LEYEN S K. Evaluation of mathematical models for flexible job-shop scheduling problems[J]. Applied Mathematical Modelling, 2013, 37(3): 977-988.
[7] TASSEL P, GEBSER M, SCHEKOTIHIN K. An end-to-end reinforcement learning approach for job-shop scheduling problems based on constraint programming[J]. arXiv:2306.05747, 2023.
[8] 黄学文, 陈绍芬, 周阗玉, 等. 求解柔性作业车间调度的遗传算法综述[J]. 计算机集成制造系统, 2022, 28(2): 536-551.
HUANG X W, CHEN S F, ZHOU T Y, et al. Survey on genetic algorithms for solving flexible job-shop scheduling problem[J]. Computer Integrated Manufacturing System, 2022, 28 (2): 536-551.
[9] NOUIRI M, BEKRAR A, JEMAI A, et al. An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem[J]. Journal of Intelligent Manufacturing, 2018, 29: 603-615.
[10] LI H, GAO K, DUAN P Y, et al. An improved artificial bee colony algorithm with Q-learning for solving permutation flow-shop scheduling problems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(5): 2684-2693.
[11] MONTAZERI M, WASSENHOVE V L N. Analysis of scheduling rules for an FMS[J]. The International Journal of Production Research, 1990, 28(4): 785-802.
[12] DU Y, LI J, LI C, et al. A reinforcement learning approach for flexible job shop scheduling problem with crane transportation and setup times[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(4): 5695-5709.
[13] WANG S, LI J, TANG H, et al. CEA-FJSP: carbon emission-aware flexible job-shop scheduling based on deep reinforcement learning[J]. Frontiers in Environmental Science, 2022, 10: 1059451.
[14] BRANDIMARTE P. Routing and scheduling in a flexible job shop by Tabu search[J]. Annals of Operations Research, 1993, 41(3): 157-183.
[15] ZHANG C, SONG W, CAO Z, et al. Learning to dispatch for job shop scheduling via deep reinforcement learning[C]//Advances in Neural Information Processing Systems, 2020: 1621-1632.
[16] PARK J, CHUN J, KIM S H, et al. Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning[J]. International Journal of Production Research, 2021, 59(11): 3360-3377.
[17] 吴昊泽, 李艳武, 谢辉. 改进PPO算法求解柔性作业车间调度问题[J/OL]. 计算机集成制造系统: 1-20(2023-06-01)[2024-03-15]. http://kns.cnki.net/kcms/detail/11.5946.TP. 20230601.0942.006.html.
WU H Z, LI Y W, XIE H. Improved proximal policy optimization algorithm for solving flexible job shop scheduling problem[J/OL]. Computer Integrated Manufacturing System: 1-20(2023-06-01)[2024-03-15]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230601.0942.006.html.
[18] SONG W, CHEN X, LI Q, et al. Flexible job-shop scheduling via graph neural network and deep reinforcement learning[J]. IEEE Transactions on Industrial Informatics, 2022, 19(2): 1600-1610.
[19] GIACOMO D C, TEPPAN E C. Industrial size job shop scheduling tackled by present day CP solvers[C]//Proceedings of the 25th International Conference on Principles and Practice of Constraint Programming, 2019: 144-160.
[20] HAN BI, YANG J. A deep reinforcement learning based solution for flexible job shop scheduling problem[J]. International Journal of Simulation Modelling, 2021, 20(2): 375-386.
[21] 张凯, 毕利, 焦小刚. 集成强化学习算法的柔性作业车间调度问题研究[J]. 中国机械工程, 2023, 34(2): 201-207.
ZHANG K, BI L, JIAO X G. Research on flexible job shop scheduling problem integrated with reinforcement learning algorithm[J]. China Mechanical Engineering, 2023, 34(2): 201-207.
[22] 李兴洲, 李艳武, 谢辉. 基于 CNN 的深度强化学习算法求解柔性作业车间调度问题[J]. 计算机工程与应用, 2024, 60(17): 312-320.
LI X Z, LI Y W, XIE H. Deep reinforcement learning algorithm based on CNN to solve flexible job-shop scheduling problem[J]. Computer Engineering and Applications, 2024, 60(17): 312-320. |